Abstract

In this work we report the numerical results on the filamentation and supercontinuum (SC) generation of femtosecond flat-top pulses with different steep edges propagating in fused silica. Results show that the filamentation process is determined mainly by the self-steepening effect and ionization, and the SC generation is influenced mainly by the self-steepening effect. The filamentation onset and termination is determined by the leading edge and the tailing edge, respectively. The steeper the leading edge is, the earlier the filamentation onset is; the steeper the tailing edge is, the earlier the filamentation termination is. The cutoff wavelength in the blue-side region of the SC has no obvious difference for the pulses with different leading and tailing edges. But the spectral intensity of the blue extension is much stronger for the pulses with the steeper leading edges. The stronger spectral intensity results from the formation of more steep descending edges during filamentation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica

Jonathan B. Ashcom, Rafael R. Gattass, Chris B. Schaffer, and Eric Mazur
J. Opt. Soc. Am. B 23(11) 2317-2322 (2006)

Femtosecond laser filamentation with a microlens array in air

Tingting Xi, Zhijie Zhao, and Zuoqiang Hao
J. Opt. Soc. Am. B 32(1) 163-166 (2015)

Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations

Zhanxin Wang, Jiansheng Liu, Ruxin Li, and Zhizhan Xu
Opt. Express 17(16) 13841-13850 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  2. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref]
  3. D. Mirell, O. Chalus, K. Peterson, and J.-C. Diels, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, B108–B111 (2008).
    [Crossref]
  4. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
    [Crossref]
  5. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
    [Crossref]
  6. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
    [Crossref]
  7. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
    [Crossref]
  8. D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
    [Crossref]
  9. D. N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y. S. Kivshar, “Supercontinuum generation with optical vortices,” Opt. Express 18, 18368–18373 (2010).
    [Crossref]
  10. P. Hansinger, G. Maleshkov, I. L. Garanovich, D. V. Skryabin, D. N. Neshev, A. Dreischuh, and G. G. Paulus, “White light generated by femtosecond optical vortex beams,” J. Opt. Soc. Am. B 33, 681–690 (2016).
    [Crossref]
  11. H. Gao, W. Chu, G. L. Yu, B. Zeng, J. Y. Zhao, Z. Wang, W. W. Liu, Y. Cheng, and Z. Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21, 4612–4622 (2013).
    [Crossref]
  12. A. Camino, Z. Q. Hao, X. Liu, and J. Q. Lin, “High spectral power femtosecond supercontinuum source by use of microlens array,” Opt. Lett. 39, 747–750 (2014).
    [Crossref]
  13. T. T. Xi, Z. J. Zhao, and Z. Q. Hao, “Femtosecond laser filamentation with a microlens array in air,” J. Opt. Soc. Am. B 32, 163–166 (2015).
    [Crossref]
  14. B. Zeng, T. J. Wang, S. Hosseini, Y. Cheng, Z. Z. Xu, W. W. Liu, and S. L. Chin, “Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses,” J. Opt. Soc. Am. B 29, 3226–3230 (2012).
    [Crossref]
  15. T. T. Xi, Z. J. Zhao, and Z. Q. Hao, “Filamentation of femtosecond laser pulses with spatial chirp in air,” J. Opt. Soc. Am. B 31, 321–324 (2014).
    [Crossref]
  16. G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
    [Crossref]
  17. R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
    [Crossref]
  18. L. D. Zhan, M. N. Xu, T. T. Xi, and Z. Q. Hao, “Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air,” Phys. Plasmas 25, 103102 (2018).
    [Crossref]
  19. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [Crossref]
  20. J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
    [Crossref]
  21. L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
    [Crossref]
  22. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  23. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [Crossref]
  24. F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
    [Crossref]

2018 (1)

L. D. Zhan, M. N. Xu, T. T. Xi, and Z. Q. Hao, “Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air,” Phys. Plasmas 25, 103102 (2018).
[Crossref]

2016 (1)

2015 (1)

2014 (3)

2013 (3)

H. Gao, W. Chu, G. L. Yu, B. Zeng, J. Y. Zhao, Z. Wang, W. W. Liu, Y. Cheng, and Z. Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21, 4612–4622 (2013).
[Crossref]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

2012 (1)

2010 (2)

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

D. N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y. S. Kivshar, “Supercontinuum generation with optical vortices,” Opt. Express 18, 18368–18373 (2010).
[Crossref]

2008 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

2006 (4)

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
[Crossref]

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

2003 (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

2000 (2)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
[Crossref]

1989 (1)

1967 (1)

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

1965 (1)

Abdollahpour, D.

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

Ackermann, R.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Béjot, P.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Bergé, L.

J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
[Crossref]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
[Crossref]

Bonacina, L.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Boppart, S. A.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Camino, A.

Chalus, O.

Cheng, Y.

Chin, S. L.

Chu, W.

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

DeMartini, F.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Diels, J.-C.

Dreischuh, A.

Duchateau, G.

J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
[Crossref]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Gao, H.

Garanovich, I. L.

Gordon, J. P.

Gustafson, T. K.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Hansinger, P.

Hao, Z. Q.

Haus, H. A.

Heck, G.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
[Crossref]

Hosseini, S.

Kasparian, J.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Kelley, P. L.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Kivshar, Y. S.

Lascoux, N.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Lederer, F.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Levis, R. J.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
[Crossref]

Li, S. H.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Lin, J. Q.

Lindinger, A.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Liu, W. W.

Liu, X.

Maleshkov, G.

Malitson, I. H.

Mauger, S.

L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Mirell, D.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Neshev, D. N.

Panagiotopoulos, P.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

Papazoglou, D. G.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

Paulus, G. G.

Peterson, K.

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Rohwetter, P.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Rolle, J.

J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
[Crossref]

Salmon, E.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Samoc, M.

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Schnürer, M.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Skryabin, D. V.

Skupin, S.

J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
[Crossref]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
[Crossref]

Sloss, J.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
[Crossref]

Sokollik, T.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Steinmeyer, G.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref]

Stelmaszczyk, K.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

Stibenz, G.

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Stolen, R. H.

Suntsov, S.

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

Tomlinson, W. J.

Townes, C. H.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Tu, H.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
[Crossref]

Tzortzakis, S.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

Wang, T. J.

Wang, Z.

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wolf, J.-P.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wöste, L.

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Xi, T. T.

Xu, M. N.

L. D. Zhan, M. N. Xu, T. T. Xi, and Z. Q. Hao, “Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air,” Phys. Plasmas 25, 103102 (2018).
[Crossref]

Xu, Z. Z.

Yu, G. L.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Zeng, B.

Zhan, L. D.

L. D. Zhan, M. N. Xu, T. T. Xi, and Z. Q. Hao, “Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air,” Phys. Plasmas 25, 103102 (2018).
[Crossref]

Zhao, J. Y.

Zhao, Z. J.

Zhavoronkov, N.

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Appl. Phys. Lett. (1)

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. H. Li, A. Lindinger, L. Wöste, P. Béjot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (6)

Laser Photon. Rev. (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
[Crossref]

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

Opt. Commun. (1)

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259, 216–222 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Plasmas (1)

L. D. Zhan, M. N. Xu, T. T. Xi, and Z. Q. Hao, “Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air,” Phys. Plasmas 25, 103102 (2018).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. (1)

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Phys. Rev. A (3)

D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A 81, 061807 (2010).
[Crossref]

J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, “Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study,” Phys. Rev. A 90, 023834 (2014).
[Crossref]

L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2000).
[Crossref]

Phys. Rev. E (1)

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Initial intensity distribution in the temporal region for the flat-top pulses with different durations of the leading and tailing edges: τtop=153fs, τleading=τtailing=76fs (LL), τleading=τtailing=15fs (SS), τleading=15fs, τtailing=76fs (SL), and τleading=76fs, τtailing=15fs (LS). All the flat-top pulses have the same peak power of P0=2Pcr and transverse Gaussian distribution with the same beam waist of 42.4 μm.
Fig. 2.
Fig. 2. Maximal on-axis intensity of the flat-top pulses as a function of propagation distance z. LL, SS, SL, and LS denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL); τleading=τtailing=15fs (SS); τleading=15fs, τtailing=76fs (SL); and τleading=76fs, τtailing=15fs (LS).
Fig. 3.
Fig. 3. Temporal distribution of the nonlinear refractive index induced by the Kerr effect and electron generation; Δn=n2tR(tt)|E(t)|2dtρ/2ρc at the initial propagation distance z=0mm. LL, SL, and LS denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL); τleading=15fs, τtailing=76fs (SL); and τleading=76fs, τtailing=15fs (LS).
Fig. 4.
Fig. 4. Evolution of temporal intensity distribution of (a) LL, (b) SL, and (c) LS at different propagation distances. LL, SL, and LS denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL); τleading=15fs, τtailing=76fs (SL); and τleading=76fs, τtailing=15fs (LS).
Fig. 5.
Fig. 5. Spectra of the flat-top pulses at the propagation distance z=10mm. LL, SS, SL, and LS denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL); τleading=τtailing=15fs (SS); τleading=15fs, τtailing=76fs (SL); and τleading=76fs, τtailing=15fs (LS).
Fig. 6.
Fig. 6. Spectra of the flat-top pulses (a) LL and (b) SL at different propagation distances. LL and SL denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL) and τleading=15fs, τtailing=76fs (SL).
Fig. 7.
Fig. 7. Temporal intensity distribution of the pulses for (a) LL and (b) SL at different propagation distances. The slope of the refractive index induced by the Kerr effect (dnkerrdt, nkerr=n2I) and electron generation (dnelecdt, nelec=ρ/2ρc) for (c) LL and (d) SL at different propagation distances. LL and SL denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL) and τleading=15fs, τtailing=76fs (SL).
Fig. 8.
Fig. 8. Evolution of electron density as a function of time for the pulses (a) LL and (b) SL at different propagation distances. LL and SL denote the pulses with τtop=153fs, τleading=τtailing=76fs (LL) and τleading=15fs, τtailing=76fs (SL).
Fig. 9.
Fig. 9. (a) Maximal on-axis intensity of the flat-top pulses as a function of propagation distance z. (b) The spectra of the flat-top pulses at the propagation distance z=10mm. LL, SS, SL, and LS denote the pulses with τtop=130fs, τleading=τtailing=85fs (LL); τleading=τtailing=20fs (SS); τleading=20fs, τtailing=85fs (SL); and τleading=85fs, τtailing=20fs (LS).

Tables (1)

Tables Icon

Table 1. Physical Parameters for Fused Silica at 800 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zE=i2k0T1E+iDE+iω0cn2TtR(tt)|E(t)|2dtEik02n0ρcT1ρEβ(κ)2|E|2κ2Eσ2ρE,
ρt=β(κ)|E|2κUi+σρIUiρτrec,
E(x,y,t,z=0)=2P0/πw02exp(x2+y2w02)A(t)exp(ikx2+y22f).
A(t)={1,τtop2tτtop2;exp[(t+τtop2)2τleading2],tτtop2;exp[(tτtop2)2τtailing2],tτtop2,

Metrics