Abstract

A refractive index sensor using two concentric triple racetrack resonators with plasmonic metal–insulator–metal (MIM) waveguides is suggested to provide more freedom for sensing applications. Due to momentum matching, intensive coupling happens between the equivalent modes of each section of the resonators. The sensing properties are numerically discussed in terms of the finite difference time domain method. According to the outcomes, when increasing the refractive index of the material in the outer sections of the racetrack resonators, the dip wavelengths show a notable red shift. The sensing performance can be enhanced by using two multiple concentric resonators that effectively increase the strength of the light–analyte interaction, which is useful for sensing applications. Our proposed nanosensor offers a high sensitivity value, sensing resolution, and figure of merit of 1618 nm/RIU, ${6.18} \times {10}^{ - 4}\,\,{\rm{RIU}}$, and $89\,\,{\rm{RI{U}}^{ - 1}}$, respectively. Also, the racetrack resonators coupled to MIM waveguides can be simply integrated into chip circuits with other optical devices to perform monitoring and filtering tasks.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance sensor for low refractive index detection based on microstructured fiber

Jianshuai Wang, Li Pei, Ji Wang, ZuLiang Ruan, Jingjing Zheng, and Jing Li
J. Opt. Soc. Am. B 36(11) 3104-3110 (2019)

Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring

Mohammad Reza Rakhshani, Alireza Tavousi, and Mohammad Ali Mansouri-Birjandi
Appl. Opt. 57(27) 7798-7804 (2018)

Effect of dispersion on sensing parameters of a racetrack resonator-based biosensor at 850  nm

Foroogh Khozeymeh and Mohammad Razaghi
J. Opt. Soc. Am. B 35(11) 2734-2743 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  3. S. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).
  4. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
    [Crossref]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [Crossref]
  6. Z. Serahati, M. Rajaei, and M. Shahabadi, “Analysis of integrated MIM-based plasmonic devices using a transmission-line formulation,” J. Opt. Soc. Am. B 32, 1843–1850 (2015).
    [Crossref]
  7. M. R. Rakhshani and M. A. Mansouri-Birjandi, “Dual wavelength demultiplexer based on metal-insulator–metal plasmonic circular ring resonators,” J. Mod. Opt. 63, 1078–1086 (2016).
    [Crossref]
  8. Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
    [Crossref]
  9. M. R. Rakhshani, A. Tavousi, and M. A. Mansouri-Birjandi, “Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring,” Appl. Opt. 57, 7798–7804 (2018).
    [Crossref]
  10. K. Kumar, U. K. Kumawat, R. O. H. A. N. Mital, and A. N. U. J. Dhawan, “Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells,” J. Opt. Soc. Am. B 36, 978–990 (2019).
    [Crossref]
  11. Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
    [Crossref]
  12. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
    [Crossref]
  13. C. Gunasekaran, B. S. Kumar, N. Ayyanar, G. T. Raja, and R. Mohan, “Surface-plasmon-based photonic crystal fibers for high-bandwidth filter realization,” J. Opt. Soc. Am. B 36, 1574–1580 (2019).
    [Crossref]
  14. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [Crossref]
  15. M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sens. Actuators B Chem. 249, 168–176 (2017).
    [Crossref]
  16. M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection,” IEEE Trans. Nanotechnol. 17, 475–481 (2018).
    [Crossref]
  17. P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photon. Technol. Lett. 30, 959–962 (2018).
    [Crossref]
  18. M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
    [Crossref]
  19. G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
    [Crossref]
  20. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998).
    [Crossref]
  21. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20, 1525–1529 (2002).
    [Crossref]
  22. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
    [Crossref]
  23. M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal-insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
    [Crossref]
  24. D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
    [Crossref]
  25. M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application,” Plasmonics 12, 999–1006 (2017).
    [Crossref]
  26. X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
    [Crossref]
  27. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref]
  28. Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
    [Crossref]
  29. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
    [Crossref]
  30. H. F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229–2233 (2007).
    [Crossref]
  31. L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
    [Crossref]
  32. B. Wang and G. P. Wang, “Plasmon Bragg refectors and nanocavities on fat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [Crossref]
  33. M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal-insulator–metal waveguide and hexagonal-ring cavity,” IEEE Sens. J. 16, 3041–3046 (2016).
    [Crossref]
  34. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
    [Crossref]
  35. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
    [Crossref]
  36. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
    [Crossref]
  37. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
    [Crossref]
  38. Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
    [Crossref]
  39. W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
    [Crossref]
  40. A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
    [Crossref]
  41. K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
    [Crossref]
  42. S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
    [Crossref]
  43. H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
    [Crossref]
  44. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [Crossref]
  45. H. Sobral and M. Peña-Gomar, “Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle,” Appl. Opt. 54, 8453–8458 (2015).
    [Crossref]

2019 (4)

2018 (8)

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal-insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection,” IEEE Trans. Nanotechnol. 17, 475–481 (2018).
[Crossref]

P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photon. Technol. Lett. 30, 959–962 (2018).
[Crossref]

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

M. R. Rakhshani, A. Tavousi, and M. A. Mansouri-Birjandi, “Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring,” Appl. Opt. 57, 7798–7804 (2018).
[Crossref]

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

2017 (5)

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
[Crossref]

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application,” Plasmonics 12, 999–1006 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sens. Actuators B Chem. 249, 168–176 (2017).
[Crossref]

2016 (4)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal-insulator–metal waveguide and hexagonal-ring cavity,” IEEE Sens. J. 16, 3041–3046 (2016).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Dual wavelength demultiplexer based on metal-insulator–metal plasmonic circular ring resonators,” J. Mod. Opt. 63, 1078–1086 (2016).
[Crossref]

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

2015 (3)

2013 (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

2012 (2)

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

2011 (1)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

2010 (2)

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

2009 (2)

D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
[Crossref]

A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
[Crossref]

2008 (2)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[Crossref]

2007 (3)

2006 (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

2005 (1)

B. Wang and G. P. Wang, “Plasmon Bragg refectors and nanocavities on fat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

2002 (1)

2000 (1)

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
[Crossref]

1999 (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

1998 (1)

Aalizadeh, M.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

Alexandropoulos, D.

D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
[Crossref]

Arnob, M. M. P.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Ayyanar, N.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Borghs, G.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Butun, B.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Chen, C.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Chen, J.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Chen, K.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Chin, M. K.

Chu, S. T.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20, 1525–1529 (2002).
[Crossref]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

Daimon, M.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Dhawan, A. N. U. J.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Estevez, M. C.

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

Gai, H. F.

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Gao, B. Z.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Ghahraloud, H.

Gu, D.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Gunasekaran, C.

Hai, Z.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Hajati, M.

Hajati, Y.

Hayashi, S.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

He, C.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

He, J.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Ho, H. P.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Ho, S. T.

Hu, Z. D.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

Huang, C.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Huang, Y. X.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

Inouye, Y.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Ishitobi, H.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Jha, R.

A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
[Crossref]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Khavasi, A.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

Kim, H.

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Kokubun, Y.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20, 1525–1529 (2002).
[Crossref]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Kumar, B. S.

Kumar, K.

Kumar, V. D.

P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photon. Technol. Lett. 30, 959–962 (2018).
[Crossref]

Kumawat, U. K.

Lagae, L.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Lechuga, L. M.

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

Lee, B.

Li, H.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
[Crossref]

Li, X.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Lin, L.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
[Crossref]

Little, B. E.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Lodewijks, K.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

Lopez, G. A.

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Lu, Y.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Mahani, F. F.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).

Mansouri-Birjandi, M. A.

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal-insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection,” IEEE Trans. Nanotechnol. 17, 475–481 (2018).
[Crossref]

M. R. Rakhshani, A. Tavousi, and M. A. Mansouri-Birjandi, “Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring,” Appl. Opt. 57, 7798–7804 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sens. Actuators B Chem. 249, 168–176 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application,” Plasmonics 12, 999–1006 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Dual wavelength demultiplexer based on metal-insulator–metal plasmonic circular ring resonators,” J. Mod. Opt. 63, 1078–1086 (2016).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal-insulator–metal waveguide and hexagonal-ring cavity,” IEEE Sens. J. 16, 3041–3046 (2016).
[Crossref]

Mao, D.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Masumura, A.

Ming, H.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Mital, R. O. H. A. N.

Mohan, R.

Mokhtari, A.

Nesterenko, D. V.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Ohashi, Y.

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Ozbay, E.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

Park, J.

Pattanaik, H. S.

A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
[Crossref]

Peña-Gomar, M.

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Qu, J.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Rahmouni, A.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Raja, G. T.

Rajaei, M.

Rakhshani, M. R.

M. R. Rakhshani, A. Tavousi, and M. A. Mansouri-Birjandi, “Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring,” Appl. Opt. 57, 7798–7804 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection,” IEEE Trans. Nanotechnol. 17, 475–481 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal-insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application,” Plasmonics 12, 999–1006 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sens. Actuators B Chem. 249, 168–176 (2017).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal-insulator–metal waveguide and hexagonal-ring cavity,” IEEE Sens. J. 16, 3041–3046 (2016).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Dual wavelength demultiplexer based on metal-insulator–metal plasmonic circular ring resonators,” J. Mod. Opt. 63, 1078–1086 (2016).
[Crossref]

Ranjan, B.

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Refki, S.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Saito, Y.

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Salemizadeh, M.

Santos, G. M.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Scheuer, J.

D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Sekkat, Z.

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Serahati, Z.

Shahabadi, M.

Shao, Y.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
[Crossref]

Sharma, P.

P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photon. Technol. Lett. 30, 959–962 (2018).
[Crossref]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Shih, W. C.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Sobral, H.

Soler, M.

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

Stakenborg, T.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Suzuki, S.

Tang, Y.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Tavousi, A.

Tian, Q.

Umakoshi, T.

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Vafapour, Z.

Vainos, N. A.

D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
[Crossref]

Van Dorpe, P.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

Van Roy, W.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

Verma, P.

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg refectors and nanocavities on fat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg refectors and nanocavities on fat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, J.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

H. F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229–2233 (2007).
[Crossref]

Wang, L.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Wang, P.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Wang, R.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Wang, S.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Wu, S. Y.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Wu, X.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Xie, S.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
[Crossref]

Xie, Y. Y.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

Xu, W. H.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

Xue, C.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Yan, S.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Yanagase, Y.

Yang, L.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

Yang, L. Z.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Ye, J.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Zenasni, O.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Zeng, Y.

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

Zhan, Q.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

Zhang, W.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Zhang, Z.

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Zhao, F.

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Zhao, W. L.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

Zheng, G.

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

ACS Nano (1)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Ann. Phys. (1)

S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530, 1700411 (2018).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

B. Wang and G. P. Wang, “Plasmon Bragg refectors and nanocavities on fat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structures with intracavity reflections,” IEEE J. Sel. Top. Quantum Electron. 15, 1420–1426 (2009).
[Crossref]

IEEE Photon. J. (1)

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photon. J. 7, 4800612 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).
[Crossref]

P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photon. Technol. Lett. 30, 959–962 (2018).
[Crossref]

IEEE Sens. J. (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal-insulator–metal waveguide and hexagonal-ring cavity,” IEEE Sens. J. 16, 3041–3046 (2016).
[Crossref]

IEEE Trans. Nanotechnol. (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection,” IEEE Trans. Nanotechnol. 17, 475–481 (2018).
[Crossref]

J. Appl. Phys. (1)

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107, 124517 (2010).
[Crossref]

J. Biomed. Opt. (2)

A. K. Sharma, R. Jha, and H. S. Pattanaik, “Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group,” J. Biomed. Opt. 14, 064041 (2009).
[Crossref]

K. Chen, Y. Zeng, L. Wang, D. Gu, J. He, S. Y. Wu, H. P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions,” J. Biomed. Opt. 21, 127003 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Dual wavelength demultiplexer based on metal-insulator–metal plasmonic circular ring resonators,” J. Mod. Opt. 63, 1078–1086 (2016).
[Crossref]

J. Opt. Soc. Am. B (5)

Langmuir (1)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Nano Lett. (2)

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12, 1655–1659 (2012).
[Crossref]

W. C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous chemical and refractive index sensing in the 1–2.5  μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641–4647 (2016).
[Crossref]

Nanophotonics (1)

G. A. Lopez, M. C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6, 123 (2017).
[Crossref]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, and C. Jin, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Photonics (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Express (1)

Photon. Nanostruct. Fundam. Appl. (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal-insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

Plasmonics (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application,” Plasmonics 12, 999–1006 (2017).
[Crossref]

Proc. SPIE (1)

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” Proc. SPIE 3914, 517–521 (2000).
[Crossref]

Sci. Rep. (4)

L. Yang, J. Wang, L. Z. Yang, Z. D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref]

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Rep. 8, 9162 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref]

Y. Ohashi, B. Ranjan, Y. Saito, T. Umakoshi, and P. Verma, “Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging,” Sci. Rep. 9, 2656 (2019).
[Crossref]

Sens. Actuators B Chem. (1)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sens. Actuators B Chem. 249, 168–176 (2017).
[Crossref]

Sensors (1)

Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors 17, 784 (2017).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Two-dimensional (2D) schematic of the metal–insulator–metal waveguide coupled with two racetrack resonators.
Fig. 2.
Fig. 2. (a) Output characteristic of MIM waveguide coupled with two racetrack resonators (top) and with each outer and middle + inner resonator (bottom). (b)–(f) Contour profiles of the magnetic field at (b) first dip (1500 nm), (c) second dip (910 nm), (d) third dip (876.4 nm), (e) fourth dip (763.4 nm), and (f) non-dip wavelength of 1600 nm.
Fig. 3.
Fig. 3. Mode coupling illustration between the ${{\rm{TM}}_2}$ modes of the inner and outer racetrack resonators.
Fig. 4.
Fig. 4. Variation of (a) output characteristics, (b) dip resonance, (c) transmitted power, and (d) sensitivity with different values of ${{n}_1}$ . Here, ${{n}_2} = {{n}_3} = {{n}_4} = 1$ .
Fig. 5.
Fig. 5. Variation of (a) output characteristics, (b) dip resonance, (c) transmitted power, and (d) sensitivity with different values of ${{n}_2}$ . Here, ${{n}_1} = {{n}_3} = {{n}_4} =1$ .
Fig. 6.
Fig. 6. Variation of (a) output characteristics, (b) dip wavelength, (c) transmitted power, and (d) sensitivity with different values of ${{n}_3}$ . Here, ${{n}_1} = {{n}_2} = {{n}_4} = 1$ .
Fig. 7.
Fig. 7. Variation of (a) output characteristics, (b) dip wavelength, (c) transmitted power, and (d) sensitivity with different values of ${{n}_4}$ . Here, ${{n}_1} = {{n}_2} = {{n}_3} = 1$ .
Fig. 8.
Fig. 8. Variation of (a) output characteristics, (b) dip wavelength, (c) transmitted power, and (d) sensitivity with different values of ${{n}_1}$ , ${{n}_2}$ , and ${{n}_3}$ , simultaneously.
Fig. 9.
Fig. 9. Changing the refractive index of water with wavelength for different glucose concentrations at room temperature.
Fig. 10.
Fig. 10. Transmissions for different glucose concentrations (0–8 g/dl) injected into resonators.

Tables (3)

Tables Icon

Table 1. Summary of the Model Parameter Values

Tables Icon

Table 2. Parameter Comparison of Some Published Papers

Tables Icon

Table 3. Summary of Model Coefficients ( $T = 20^\circ{\rm{C}}$ )

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = 1 ω p 2 ω ( ω i Γ 0 ) + n = 1 6 f n ω n 2 ω n 2 ω 2 + i ω Γ n ,
n 2 = 1 + A 1 λ 2 λ 2 C 1 + A 2 λ 2 λ 2 C 2 + A 3 λ 2 λ 2 C 3 + A 4 λ 2 λ 2 C 4 ,
Δ n ( λ ) = d n d c ( λ ) C ,

Metrics