Abstract

We develop a method to control the group delay of electromagnetic waves continuously using a doubly resonant metasurface. The method is based on the dependences of (i) the group velocity in a medium featuring two resonance lines on the resonance linewidths and (ii) the resonance linewidth of a metasurface composed of split-ring resonators on an incidence angle of electromagnetic wave. To verify this method for group-delay control, we design a terahertz metasurface composed of two split-ring resonators with different resonance frequencies and numerically analyze the transmission characteristic of the metasurface. Double resonance lines are observed for oblique incidence, and the resonance transmission dips become deeper and broader with increasing the incidence angle. The group delay at around the center frequency of the double resonance lines is found to vary in the range from about 0 s to 20 times the period of the incident wave with the incidence angle. In contrast to a previously reported method for variable control of group delay using electromagnetically-induced-transparency-like metamaterials, a high transmittance is achieved for a small group delay condition.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators

Zhaofeng Li, Semih Cakmakyapan, Bayram Butun, Christina Daskalaki, Stelios Tzortzakis, Xiaodong Yang, and Ekmel Ozbay
Opt. Express 22(22) 26572-26584 (2014)

Nonbianisotropic complementary split ring resonators as angular selective metasurfaces

Pablo Rodríguez-Ulibarri and Miguel Beruete
J. Opt. Soc. Am. B 34(7) D56-D61 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  4. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  5. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
    [Crossref]
  6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  7. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [Crossref]
  8. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [Crossref]
  9. Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
    [Crossref]
  10. Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
    [Crossref]
  11. G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
    [Crossref]
  12. F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123, 173101 (2018).
    [Crossref]
  13. Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
    [Crossref]
  14. X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
    [Crossref]
  15. Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
    [Crossref]
  16. Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
    [Crossref]
  17. M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
    [Crossref]
  18. Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
    [Crossref]
  19. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
    [Crossref]
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  21. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
    [Crossref]
  22. Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
    [Crossref]
  23. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
    [Crossref]
  24. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
    [Crossref]
  25. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
    [Crossref]
  26. Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
    [Crossref]
  27. Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
    [Crossref]
  28. Y. Tamayama and O. Sakai, “Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface,” J. Appl. Phys. 121, 073303 (2017).
    [Crossref]
  29. Y. Tamayama and T. Yoshimura, “Frequency mixing at an electromagnetically induced transparency like metasurface loaded with gas as a nonlinear element,” Appl. Phys. Lett. 113, 061901 (2018).
    [Crossref]
  30. Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
    [Crossref]
  31. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
    [Crossref]
  32. T. Nakanishi and M. Kitano, “Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial,” Appl. Phys. Lett. 112, 201905 (2018).
    [Crossref]
  33. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref]
  34. T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
    [Crossref]
  35. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
    [Crossref]
  36. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
    [Crossref]
  37. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
    [Crossref]
  38. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929–2936 (2002).
    [Crossref]
  39. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
    [Crossref]
  40. J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
    [Crossref]
  41. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [Crossref]
  42. T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
    [Crossref]

2019 (2)

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

2018 (6)

T. Nakanishi and M. Kitano, “Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial,” Appl. Phys. Lett. 112, 201905 (2018).
[Crossref]

Y. Tamayama and T. Yoshimura, “Frequency mixing at an electromagnetically induced transparency like metasurface loaded with gas as a nonlinear element,” Appl. Phys. Lett. 113, 061901 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123, 173101 (2018).
[Crossref]

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

2017 (2)

Y. Tamayama and O. Sakai, “Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface,” J. Appl. Phys. 121, 073303 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

2016 (2)

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

2015 (3)

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
[Crossref]

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

2014 (2)

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

2013 (2)

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

2012 (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
[Crossref]

2011 (1)

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

2010 (2)

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
[Crossref]

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

2009 (3)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

2005 (4)

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

2002 (3)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929–2936 (2002).
[Crossref]

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Achanta, V.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Agarwal, G. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Akaoglu, B.

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123, 173101 (2018).
[Crossref]

Alzar, C. L. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Azad, A. K.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Baena, J. D.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

Bagci, F.

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123, 173101 (2018).
[Crossref]

Bai, Z.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Beigang, R.

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Cao, W.

Chen, H.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chen, Y. Q.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Cheong, H.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Deshmukh, P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Ding, Y.-Q.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Dong, L. J.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Duttagupta, S. P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Fang, Y.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Gao, F.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

García-García, J.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929–2936 (2002).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Gu, J.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Gupta, A.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Hamada, K.

Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
[Crossref]

Han, J.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

Hokmabadi, M. P.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Hu, C.

Huang, G.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Imhof, C.

Jang, W. H.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
[Crossref]

Jelinek, L.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

Jiang, H.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Jiang, J.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Jin, X.-R.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kanazawa, T.

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kawatsuki, N.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Kim, K. W.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Kim, S. M.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Kitano, M.

T. Nakanishi and M. Kitano, “Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial,” Appl. Phys. Lett. 112, 201905 (2018).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
[Crossref]

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kung, P.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

Lee, Y.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Lee, Y. P.

Li, Q.

Li, S.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Li, Y.-H.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Liu, L.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Liu, S.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Lu, Y.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
[Crossref]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Manjappa, M.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Marqués, R.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929–2936 (2002).
[Crossref]

Martín, F.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

Martinez, M. A. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Medina, F.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Miyamaru, F.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Morita, H.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Nakanishi, T.

T. Nakanishi and M. Kitano, “Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial,” Appl. Phys. Lett. 112, 201905 (2018).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
[Crossref]

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Nishida, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Nishiyama, Y.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Noda, K.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Nussenzveig, P.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Okamoto, H.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Ono, H.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Otani, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Ouyang, C.

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Palkhivala, S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Park, J.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Paul, O.

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Philip, E.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

Prabhu, S. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Rana, G.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Reinhard, B.

Rhee, J. Y.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
[Crossref]

Rivera, E.

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

Saito, K.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Sakai, O.

Y. Tamayama and O. Sakai, “Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface,” J. Appl. Phys. 121, 073303 (2017).
[Crossref]

Sakamoto, M.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Sasaki, T.

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Shi, Y. L.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

Singh, R.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Srivastava, Y. K.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Su, X.

Sugiyama, K.

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Sun, Y.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Takeda, M. W.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Tamayama, Y.

Y. Tamayama and T. Yoshimura, “Frequency mixing at an electromagnetically induced transparency like metasurface loaded with gas as a nonlinear element,” Appl. Phys. Lett. 113, 061901 (2018).
[Crossref]

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Y. Tamayama and O. Sakai, “Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface,” J. Appl. Phys. 121, 073303 (2017).
[Crossref]

Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
[Crossref]

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tian, Z.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tong, Y.-W.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Wakasa, Y.

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Wu, Q. Y.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Wu, X. Z.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

Xu, N.

Xu, Q.

Xu, Z.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Xue, C.-H.

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

Yasui, K.

Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

Yin, X.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Yoshimura, T.

Y. Tamayama and T. Yoshimura, “Frequency mixing at an electromagnetically induced transparency like metasurface loaded with gas as a nonlinear element,” Appl. Phys. Lett. 113, 061901 (2018).
[Crossref]

Zengerle, R.

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
[Crossref]

Zhang, S.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, W.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41, 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, Y.

Zheng, H.

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Am. J. Phys. (1)

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Appl. Phys. A (2)

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” Appl. Phys. A 125, 22 (2019).
[Crossref]

T. Sasaki, K. Saito, M. Sakamoto, K. Noda, Y. Tamayama, H. Okamoto, N. Kawatsuki, and H. Ono, “Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range,” Appl. Phys. A 124, 789 (2018).
[Crossref]

Appl. Phys. Lett. (6)

T. Nakanishi and M. Kitano, “Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial,” Appl. Phys. Lett. 112, 201905 (2018).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109, 211103 (2016).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111, 021101 (2017).
[Crossref]

Y. Sun, Y.-W. Tong, C.-H. Xue, Y.-Q. Ding, Y.-H. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Y. Tamayama and T. Yoshimura, “Frequency mixing at an electromagnetically induced transparency like metasurface loaded with gas as a nonlinear element,” Appl. Phys. Lett. 113, 061901 (2018).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

J. Appl. Phys. (5)

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005).
[Crossref]

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929–2936 (2002).
[Crossref]

Y. Tamayama and O. Sakai, “Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface,” J. Appl. Phys. 121, 073303 (2017).
[Crossref]

X.-R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, “Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling,” J. Appl. Phys. 111, 073101 (2012).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123, 173101 (2018).
[Crossref]

J. Phys. D (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D 41, 232004 (2008).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Phys. Rev. B (9)

Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 85, 073102 (2012).
[Crossref]

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99, 041104 (2019).
[Crossref]

Y. Tamayama, T. Nakanishi, Y. Wakasa, T. Kanazawa, K. Sugiyama, and M. Kitano, “Electromagnetic response of a metamaterial with field-gradient-induced transparency,” Phys. Rev. B 82, 165130 (2010).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling,” Phys. Rev. B 89, 075120 (2014).
[Crossref]

Y. Tamayama, K. Hamada, and K. Yasui, “Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field,” Phys. Rev. B 92, 125124 (2015).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103 (2005).
[Crossref]

Phys. Rev. Lett. (6)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Sci. Rep. (3)

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Geometry of the unit structure of the metasurface and (b) relationship between the incident electromagnetic fields and SRRs.
Fig. 2.
Fig. 2. Frequency dependences of (a) transmittance and (b) group delay of the metasurface shown in Fig. 1 for $ \theta { = 0^ \circ } $ , 20°, 40°, 60°, and 80°. Note that the horizontal scales in (a) and (b) differ.
Fig. 3.
Fig. 3. Snapshots of the current distribution in the metasurface shown in Fig. 1 at the incidence frequency of 0.594 THz for $ \theta { = 80^ \circ } $ , which is indicated by the arrow in Fig. 2, where $ {t_1} $ is a certain time, and $ {T_1} $ is the oscillation period. The black arrows are solely a visual guide and indicate the direction of current flow in the SRRs.
Fig. 4.
Fig. 4. Transmission spectra of the metasurface for $ \theta { = 20^ \circ } $ , 40°, 60°, and 80° when one of the SRRs shown in Fig. 1(a) is rotated 180° about the $ z $ axis.
Fig. 5.
Fig. 5. Snapshots of the current distribution in the metasurface that corresponds to Fig. 4 at 0.606 THz for $ \theta { = 80^ \circ } $ , which is indicated by the arrow in Fig. 4, where $ {t_2} $ is a certain time, and $ {T_2} $ is the oscillation period. The black arrows are a visual guide indicating the direction and intensity of current flow in the SRRs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = 1 γ 1 α ω 2 + i γ 1 ω ω 1 2 γ 2 α ω 2 + i γ 2 ω ω 2 2 ,
n g ω 0 R e ( d n d ω | ω = ω 0 ) 4 α γ 0 δ 2 γ 0 2 ( δ 2 + γ 0 2 ) 2 ,
q 1 q 2 2 ( ω 0 ω 1 ) + i [ γ 0 ( Z M / L ) ] 2 ( ω 0 ω 1 ) + i [ γ 0 ( Z M / L ) ] ,

Metrics