Abstract

Generation of high-repetition-rate, femtosecond, soliton pulse trains through dual-wavelength pumping of a dispersion-decreasing fiber is studied numerically. The achievable shortest pulse width is found to be limited by third-order dispersion that has a significant effect on the pulse-compression dynamics. The output wavelength is redshifted because of intrapulse Raman scattering and depends heavily on third-order dispersion, whose positive values lead to the most redshifted solitons (>25% of the input pump center wavelength). The proposed scheme allows the generation of ultrashort pulse trains at tunable high repetition rates with a wide range of output wavelengths and pulse durations through dispersion engineering. The resulting frequency combs extend over a wide bandwidth with a tunable spacing between the comb lines.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrashort pulse train generation using nonlinear optical fibers with exponentially decreasing dispersion

Qian Li, K. Nakkeeran, and P. K. A. Wai
J. Opt. Soc. Am. B 31(8) 1786-1792 (2014)

Dual-pump frequency comb generation in normally dispersive optical fibers

Aku Antikainen and Govind P. Agrawal
J. Opt. Soc. Am. B 32(8) 1705-1711 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Cao and P. K. A. Wai, “Amplification and compression of ultrashort fundamental solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” Opt. Lett. 28, 284–286 (2003).
    [Crossref]
  2. N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
    [Crossref]
  3. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
    [Crossref]
  4. S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
    [Crossref]
  5. M. D. Pelusi and H.-F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
    [Crossref]
  6. F. K. Fatemi, “Analysis of nonadiabatically compressed pulses from dispersion-decreasing fiber,” Opt. Lett. 27, 1637–1639 (2002).
    [Crossref]
  7. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. S. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006).
    [Crossref]
  8. J. H. Lee, Y.-G. Han, S. B. Lee, T. Kogure, and D. J. Richardson, “40  GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber,” Opt. Express 12, 2187–2192 (2004).
    [Crossref]
  9. R. Grimshaw, “Slowly varying solitary waves. II. Nonlinear Schrödinger equation,” Proc. R. Soc. London A 368, 377–388 (1979).
    [Crossref]
  10. H. H. Kuehl, “Solitons on an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 5, 709–713 (1988).
    [Crossref]
  11. K. R. Tamura and M. Nakazawa, “54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor,” Opt. Lett. 26, 762–764 (2001).
    [Crossref]
  12. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
    [Crossref]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  14. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
    [Crossref]
  15. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
    [Crossref]
  16. S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
    [Crossref]
  17. P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
    [Crossref]
  18. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
    [Crossref]
  19. A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32, 1705–1711 (2015).
    [Crossref]
  20. A. Demircan, S. Amiranashvili, C. Brée, U. Morgner, and G. Steinmeyer, “Supercontinuum generation by multiple scatterings at a group velocity horizon,” Opt. Express 22, 3866–3879 (2014).
    [Crossref]
  21. A. Antikainen, F. R. Arteaga Sierra, and G. P. Agrawal, “Supercontinuum generation in photonic crystal fibers with longitudinally varying dispersion using dual-wavelength pumping,” in Frontiers in Optics (2016), paper FTu1I.6.
  22. A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
    [Crossref]
  23. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
    [Crossref]
  24. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
    [Crossref]
  25. S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
    [Crossref]
  26. S. Pitois, J. Fatome, and G. Millot, “Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2002).
    [Crossref]
  27. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
    [Crossref]
  28. D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
    [Crossref]
  29. Y. Liu, S.-G. Park, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping,” Opt. Lett. 21, 1762–1764 (1996).
    [Crossref]
  30. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  31. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [Crossref]
  32. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
    [Crossref]
  33. M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
    [Crossref]
  34. P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990).
    [Crossref]
  35. C. Mahnke and F. Mitschke, “Possibility of an Akhmediev breather decaying into solitons,” Phys. Rev. A 85, 033808 (2012).
    [Crossref]
  36. A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
    [Crossref]
  37. D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
    [Crossref]
  38. M. Karlsson and A. Höök, “Soliton-like pulses governed by fourth order dispersion in optical fibers,” Opt. Commun. 104, 303–307 (1994).
    [Crossref]
  39. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [Crossref]

2017 (1)

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
[Crossref]

2015 (1)

2014 (1)

2012 (3)

M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
[Crossref]

C. Mahnke and F. Mitschke, “Possibility of an Akhmediev breather decaying into solitons,” Phys. Rev. A 85, 033808 (2012).
[Crossref]

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

2008 (2)

N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

2006 (2)

2004 (2)

2003 (2)

W. Cao and P. K. A. Wai, “Amplification and compression of ultrashort fundamental solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” Opt. Lett. 28, 284–286 (2003).
[Crossref]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

2002 (2)

2001 (1)

1998 (1)

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
[Crossref]

1997 (3)

M. D. Pelusi and H.-F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

1996 (1)

1995 (1)

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

1994 (3)

M. Karlsson and A. Höök, “Soliton-like pulses governed by fourth order dispersion in optical fibers,” Opt. Commun. 104, 303–307 (1994).
[Crossref]

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
[Crossref]

D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
[Crossref]

1993 (2)

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

1992 (1)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
[Crossref]

1991 (1)

1990 (2)

1989 (1)

1988 (1)

1986 (1)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

1984 (1)

1979 (1)

R. Grimshaw, “Slowly varying solitary waves. II. Nonlinear Schrödinger equation,” Proc. R. Soc. London A 368, 377–388 (1979).
[Crossref]

Agrawal, G. P.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
[Crossref]

A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32, 1705–1711 (2015).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. Antikainen, F. R. Arteaga Sierra, and G. P. Agrawal, “Supercontinuum generation in photonic crystal fibers with longitudinally varying dispersion using dual-wavelength pumping,” in Frontiers in Optics (2016), paper FTu1I.6.

Alam, M. S.

Amiranashvili, S.

Antikainen, A.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
[Crossref]

A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32, 1705–1711 (2015).
[Crossref]

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

A. Antikainen, F. R. Arteaga Sierra, and G. P. Agrawal, “Supercontinuum generation in photonic crystal fibers with longitudinally varying dispersion using dual-wavelength pumping,” in Frontiers in Optics (2016), paper FTu1I.6.

Arteaga Sierra, F. R.

A. Antikainen, F. R. Arteaga Sierra, and G. P. Agrawal, “Supercontinuum generation in photonic crystal fibers with longitudinally varying dispersion using dual-wavelength pumping,” in Frontiers in Optics (2016), paper FTu1I.6.

Arteaga-Sierra, F. R.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Brée, C.

Cao, W.

Carruthers, T. S. F.

Chamberlain, R. P.

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

Champert, P.-A.

Chernikov, S. V.

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
[Crossref]

S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Couderc, V.

Demircan, A.

Dianov, E. M.

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990).
[Crossref]

Dong, L.

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

Dudley, J. M.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Erkintalo, M.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

Esarey, E.

D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
[Crossref]

Fatemi, F. K.

Fatome, J.

Février, S.

Finot, C.

Friebele, E. J.

Froehly, C.

Genty, G.

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Grimshaw, R.

R. Grimshaw, “Slowly varying solitary waves. II. Nonlinear Schrödinger equation,” Proc. R. Soc. London A 368, 377–388 (1979).
[Crossref]

Han, Y.-G.

Hasegawa, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
[Crossref]

Haus, H. A.

Höök, A.

M. Karlsson and A. Höök, “Soliton-like pulses governed by fourth order dispersion in optical fibers,” Opt. Commun. 104, 303–307 (1994).
[Crossref]

Hu, J.

Islam, M. A.

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

Karlsson, M.

M. Karlsson and A. Höök, “Soliton-like pulses governed by fourth order dispersion in optical fibers,” Opt. Commun. 104, 303–307 (1994).
[Crossref]

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Kennedy, T. A. B.

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
[Crossref]

Kibler, B.

Kim, J.

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. S. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006).
[Crossref]

D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
[Crossref]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

Kogure, T.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Kuehl, H. H.

Labonté, L.

Laming, R. I.

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[Crossref]

Lee, J. H.

Lee, S. B.

Leproux, P.

Liu, H.-F.

M. D. Pelusi and H.-F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[Crossref]

Liu, Y.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

Mahnke, C.

C. Mahnke and F. Mitschke, “Possibility of an Akhmediev breather decaying into solitons,” Phys. Rev. A 85, 033808 (2012).
[Crossref]

Mamyshev, P. V.

Marks, B. S.

Menyuk, C. R.

Millot, G.

Mitschke, F.

C. Mahnke and F. Mitschke, “Possibility of an Akhmediev breather decaying into solitons,” Phys. Rev. A 85, 033808 (2012).
[Crossref]

Morgner, U.

Mori, K.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Morioka, T.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Nakazawa, M.

Nelson, K. A.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[Crossref]

Nérin, P.

Nishimura, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
[Crossref]

Okuno, T.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
[Crossref]

Onishi, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
[Crossref]

Park, S.-G.

Payne, D. N.

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

Pelusi, M. D.

M. D. Pelusi and H.-F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[Crossref]

Pitois, S.

Prokhorov, A. M.

Provost, L.

Richardson, D. J.

J. H. Lee, Y.-G. Han, S. B. Lee, T. Kogure, and D. J. Richardson, “40  GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber,” Opt. Express 12, 2187–2192 (2004).
[Crossref]

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

Rosanov, N. N.

N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
[Crossref]

Roy, P.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Semenov, V. E.

N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
[Crossref]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

Steinmeyer, G.

Stolen, R. H.

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

Takara, H.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Tamura, K. R.

Taunay, T. F.

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
[Crossref]

Tombelaine, V.

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

Tomlinson, W. J.

Trillo, S.

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
[Crossref]

Umstadter, D.

D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
[Crossref]

Vysotina, N. V.

N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
[Crossref]

Wabnitz, S.

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
[Crossref]

Wai, P. K. A.

Weiner, A. M.

Y. Liu, S.-G. Park, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping,” Opt. Lett. 21, 1762–1764 (1996).
[Crossref]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[Crossref]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[Crossref]

Wright, B. M.

Appl. Phys. Lett (2)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3  THz repetition rate by induced modulational instability,” Appl. Phys. Lett 49, 236–238 (1986).
[Crossref]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114  Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat-signal in dispersion decreasing optical fibre,” Appl. Phys. Lett 63, 293–295 (1993).
[Crossref]

Electron. Lett. (3)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28, 931–932 (1992).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

D. J. Richardson, R. P. Chamberlain, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38  km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

M. D. Pelusi and H.-F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (5)

Nonlinearity (1)

A. Antikainen, M. Erkintalo, J. M. Dudley, and G. Genty, “On the phase-dependent manifestation of optical rogue waves,” Nonlinearity 25, R73 (2012).
[Crossref]

Opt. Commun. (1)

M. Karlsson and A. Höök, “Soliton-like pulses governed by fourth order dispersion in optical fibers,” Opt. Commun. 104, 303–307 (1994).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990).
[Crossref]

S. V. Chernikov, D. J. Richardson, D. N. Payne, and E. M. Dianov, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[Crossref]

Y. Liu, S.-G. Park, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping,” Opt. Lett. 21, 1762–1764 (1996).
[Crossref]

K. R. Tamura and M. Nakazawa, “54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor,” Opt. Lett. 26, 762–764 (2001).
[Crossref]

F. K. Fatemi, “Analysis of nonadiabatically compressed pulses from dispersion-decreasing fiber,” Opt. Lett. 27, 1637–1639 (2002).
[Crossref]

S. Pitois, J. Fatome, and G. Millot, “Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2002).
[Crossref]

W. Cao and P. K. A. Wai, “Amplification and compression of ultrashort fundamental solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” Opt. Lett. 28, 284–286 (2003).
[Crossref]

Phys. Rev. A (3)

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
[Crossref]

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95, 033813 (2017).
[Crossref]

C. Mahnke and F. Mitschke, “Possibility of an Akhmediev breather decaying into solitons,” Phys. Rev. A 85, 033808 (2012).
[Crossref]

Phys. Rev. Lett. (2)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

D. Umstadter, E. Esarey, and J. Kim, “Nonlinear plasma waves resonantly driven by optimized laser pulse trains,” Phys. Rev. Lett. 72, 1224–1227 (1994).
[Crossref]

Proc. R. Soc. London A (1)

R. Grimshaw, “Slowly varying solitary waves. II. Nonlinear Schrödinger equation,” Proc. R. Soc. London A 368, 377–388 (1979).
[Crossref]

Quantum Electron. (1)

N. N. Rosanov, V. E. Semenov, and N. V. Vysotina, “Few-cycle dissipative solitons in active nonlinear optical fibres,” Quantum Electron. 38, 137–143 (2008).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (2)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[Crossref]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. Antikainen, F. R. Arteaga Sierra, and G. P. Agrawal, “Supercontinuum generation in photonic crystal fibers with longitudinally varying dispersion using dual-wavelength pumping,” in Frontiers in Optics (2016), paper FTu1I.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Temporal (middle) and spectral (bottom) evolution of a dual-pump signal over 100 m of a DDF with β 2 increasing from 10    ps 2 / km to 0    ps 2 / km . The gray intensity scales are logarithmic. The top two traces show the duration (thick blue) and peak power (thin red) of the forming pulses as a function of distance. The vertical black dashed lines indicate the distance at which the soliton width has been reduced to three optical cycles.
Fig. 2.
Fig. 2. Evolution of an 800 GHz dual-pump signal in a fiber in which β 2 grows from 10    ps 2 / km to 5    ps 2 / km along its 150 m length. Third-order dispersion is β 3 = 0.03    ps 2 / km .
Fig. 3.
Fig. 3. Evolution of an 800 GHz dual-pump signal in a fiber in which β 2 grows from 10    ps 2 / km to 10    ps 2 / km along its 200 m length. Third-order dispersion is β 3 = 0.03    ps 3 / km . Unlike in Figs. 1 and 2, the temporal frame of reference is now with respect to the solitons, as their trajectories would look heavily curved in the pump frame of reference.
Fig. 4.
Fig. 4. Mean duration (FWHM, color coded) of the forming solitons after (a) 80 m, (b) 120 m, (c) 160 m, and (d) 200 m of propagation as a function of β 3 and the final value of β 2 . The initial value of β 2 at the input end of 200 m long fiber is 10    ps 2 / km . The striped areas in the upper left corners are regions where the pulses have lost their solitonic nature by virtue of having transferred energy to the normal dispersion regime.
Fig. 5.
Fig. 5. Comparison of pulse trains generated with the same dual-pump input in two different fibers. Fiber A is 100 m long, and its GVD increases linearly from 10    ps 2 / km to 0 over this length with β 3 = 0.05    ps 3 / km . Fiber B is 97 m long but its GVD increases from 10 to 2.725    ps 2 / km with β 3 = 0.05    ps 3 / km . The total input power is 2 W and initial pump separation is 800 GHz. The two traces on the right show the pulse around T = 0 showing how closely their shapes match.
Fig. 6.
Fig. 6. Spectra of the two pulse trains shown in Fig. 5 at the output of fibers A and B.
Fig. 7.
Fig. 7. Central wavelengths λ soliton of the forming solitons for the parameters used in Fig. 4 after (a) 80 m, (b) 120 m, (c) 160 m, and (d) 200 m of propagation. The striped regions indicate that the pulses have lost their solitonic nature and have dispersed. The upper color bar is for the top row and the lower one for the bottom row; note the different scales.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A n 2 i n + 1 n ! β n n A T n = i γ ( 1 + i τ shock T ) · ( A ( z , T ) R ( T ) | A ( z , T T ) | 2 d T ) ,
A ( 0 , T ) = P 1 e i ( Δ ω / 2 ) T + P 2 e i ( Δ ω / 2 ) T + f noise ( T ) ,
β 2 ( ω 0 ) = β 2 in + ( β 2 out β 2 in ) z L ,
ω ZDW = ω 0 β 2 in β 3 ( β 2 out β 2 in ) z β 3 L .

Metrics