Abstract

By incorporating a dielectric material into a semiconductor thin film, we have demonstrated an optically reconfigurable classical electromagnetically induced reflectance (Cl-EIR) effect in planar metamaterials (MMs) functioning at the far-infrared (far-IR) frequency regime. The proposed far-IR sensor is a microstructure composed of a semiconductor thin film and three dielectric antennas. Numerical analyses based on the far- and near-field interaction are investigated in detail. The coupling between the subradiant and supperradiant modes verify the existence of the Cl-EIR effect. The Cl-EIR frequency could be tuned by changing the surrounding medium, the temperature of the semiconductor layer, the semiconductor material, and the substrate material. Therefore, the proposed complementary MM microstructure, based on a semiconductor featuring tunable reflectance windows, may open up new avenues for designing tunable temperature sensors, optical and biomedical sensors, switches, and slow light devices.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based mid-infrared biosensor

Zohreh Vafapour, Yaser Hajati, Morteza Hajati, and Hossain Ghahraloud
J. Opt. Soc. Am. B 34(12) 2586-2592 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription