Abstract

We present a theoretical study of rough photonic surfaces and disordered photonic crystal wire and hole (slab) geometries as a scattering entrance layer to enhance the absorption in thin-film photovoltaic solar cells. One commonly accepted gold standard for scattering enhanced absorption in solar films is given by the Lambertian limit, which results in an optical path length enhancement of 4n2, where n is the refractive index. However, this limit is often an idealized upper limit and hard to realize in practice. Exploiting finite-difference time-domain simulations of realistic rough surfaces, we first explore the limitations and potential practical implementation of this ideal enhancement. A practical rough film, characterized by the RMS height (σRMS) and correlation length (Lx,y) of the random peaks, is numerically optimized for different substrate thicknesses over an optical wavelength range of 400–1100 nm. This optimized surface reflects one practical solution for Lambertian slab thicknesses above 500 nm and wavelengths in the near-UV, but performs worse in the near-IR (80%). The physical total height of the optimal rough surfaces is found to be of the order of 2 μm, which contradicts the common assumption that absorption losses within the rough film are negligible. We also investigate photonic crystal wire and slab holes structures with positional and radial disorder, for a fixed height of 1 μm with reflective Ag substrates, considering both GaAs and c-Si semiconductors. We show that the best performing GaAs nanowires give the largest total short-circuit current density (Jsc) of 30  mA/cm2. Relative to the unpatterned slabs of the same height, the greatest photonic crystal enhancements in absorption were seen for c-Si nanoholes and GaAs nanowires (enhancement factors of 1.65 and 1.33, respectively). The inclusion of lattice disorder is shown to increase the absorption enhancement in all photonic crystal structures by 4%–15%, except GaAs nanoholes, which remained within 1% of the ordered structure. Using an analysis of the computed local density of photon states, which is strongly dependent on the complex dielectric constant of the semiconductor, we demonstrate that, due to the higher inherent material losses in GaAs, the useful effects of disorder-induced broadening are minimized in GaAs, compared to c-Si.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns

Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 20(S2) A224-A244 (2012)

Light trapping in thin-film solar cells with randomly rough and hybrid textures

Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 21(S5) A808-A820 (2013)

Disordered photonic structures for light harvesting in solar cells

Filippo Pratesi, Matteo Burresi, Francesco Riboli, Kevin Vynck, and Diederik S. Wiersma
Opt. Express 21(S3) A460-A468 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
  2. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
    [Crossref]
  3. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref]
  4. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [Crossref]
  5. J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
    [Crossref]
  6. R. B. Wehrspohn, U. Rau, and A. Gombert, eds., Photon Management in Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, 2015).
  7. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  8. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
    [Crossref]
  9. C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
    [Crossref]
  10. S. Mokkapat and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
    [Crossref]
  11. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
    [Crossref]
  12. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
    [Crossref]
  13. A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005).
    [Crossref]
  14. C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
    [Crossref]
  15. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
    [Crossref]
  16. H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
    [Crossref]
  17. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
    [Crossref]
  18. N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
    [Crossref]
  19. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).
    [Crossref]
  20. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
    [Crossref]
  21. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
    [Crossref]
  22. A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
    [Crossref]
  23. A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
    [Crossref]
  24. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
    [Crossref]
  25. L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Towards the Lambertian limit in thin film silicon solar cells with photonic structures,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 491–496.
  26. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
    [Crossref]
  27. J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
    [Crossref]
  28. G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21, A515–A527 (2013).
    [Crossref]
  29. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10, 2410–2415 (1993).
    [Crossref]
  30. S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010).
    [Crossref]
  31. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
    [Crossref]
  32. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
    [Crossref]
  33. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [Crossref]
  34. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
    [Crossref]
  35. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
    [Crossref]
  36. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [Crossref]
  37. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
    [Crossref]
  38. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 865 (2010).
    [Crossref]
  39. L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, “Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal,” Opt. Express 21, A313–A323 (2013).
    [Crossref]
  40. Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
    [Crossref]
  41. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
    [Crossref]
  42. P.-Y. Chen, H.-H. Hsiao, C.-I. Ho, C.-C. Ho, W.-L. Lee, H.-C. Chang, S.-C. Lee, J.-Z. Chen, and I.-C. Cheng, “Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells,” Opt. Express 22, A1128–A1136 (2014).
    [Crossref]
  43. J. Hou, W. Hong, X. Li, C. Yang, and S. Chen, “Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thinfilm solar cells,” Opt. Express 25, A922–A931 (2017).
    [Crossref]
  44. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [Crossref]
  45. K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22, A930–A940 (2014).
    [Crossref]
  46. W. I. Nam, Y. J. Yoo, and Y. M. Song, “Geometrical shape design of nanophotonic surfaces for thin film solar cells,” Opt. Express 24, A1033–A1044 (2016).
    [Crossref]
  47. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
    [Crossref]
  48. C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
    [Crossref]
  49. S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
    [Crossref]
  50. A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
    [Crossref]
  51. J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
    [Crossref]
  52. G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112, 074326 (2012).
    [Crossref]
  53. P. Wang and R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of states,” Opt. Express 22, A99–A110 (2014).
    [Crossref]
  54. T. Cai and S. E. Han, “Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells,” J. Opt. Soc. Am. B 32, 2264–2270 (2015).
    [Crossref]
  55. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
    [Crossref]
  56. S. Schauer, R. Schmager, R. Hünig, K. Ding, U. W. Paetzold, U. Lemmer, M. Worgull, H. Hölscher, and G. Gomard, “Disordered diffraction gratings tailored by shape-memory based wrinkling and their application to photovoltaics,” Opt. Mater. Express 8, 184–198 (2018).
    [Crossref]
  57. S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
    [Crossref]
  58. S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
    [Crossref]
  59. R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88, 053835 (2013).
    [Crossref]
  60. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
    [Crossref]
  61. H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24, A650–A666 (2016).
    [Crossref]
  62. O. H. Al Zoubi, T. M. Said, M. A. Alher, S. El Ghazaly, and H. Naseem, “Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications,” Opt. Express 23, A767–A778 (2015).
    [Crossref]
  63. Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  64. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491–493 (1983).
    [Crossref]
  65. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
    [Crossref]
  66. Compute Canada, http://www.computecanada.ca .
  67. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
    [Crossref]
  68. C. P. Van Vlack, “Dyadic Green functions and their applications,” Ph.D. thesis (Queen’s University, 2012).
  69. C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21, A872–A882 (2013).
    [Crossref]
  70. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19, A1148–A1154 (2011).
    [Crossref]
  71. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
    [Crossref]
  72. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
    [Crossref]

2018 (1)

2017 (2)

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

J. Hou, W. Hong, X. Li, C. Yang, and S. Chen, “Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thinfilm solar cells,” Opt. Express 25, A922–A931 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (3)

2013 (8)

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
[Crossref]

L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, “Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal,” Opt. Express 21, A313–A323 (2013).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21, A872–A882 (2013).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21, A515–A527 (2013).
[Crossref]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
[Crossref]

2012 (10)

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[Crossref]

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

S. Mokkapat and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112, 074326 (2012).
[Crossref]

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

2011 (3)

2010 (6)

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 865 (2010).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
[Crossref]

2009 (4)

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
[Crossref]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
[Crossref]

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[Crossref]

2008 (3)

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).
[Crossref]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
[Crossref]

2007 (4)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref]

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref]

2006 (4)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

2005 (4)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005).
[Crossref]

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

2003 (1)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

2002 (1)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[Crossref]

2001 (1)

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

1998 (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

1993 (1)

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

1983 (1)

1982 (1)

Abrams, N.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Agrawal, M.

Al Zoubi, O. H.

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Alher, M. A.

Andreani, L. C.

Asatryan, A. A.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Atwater, H. A.

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22, A930–A940 (2014).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 865 (2010).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Ballif, C.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

Balling, P.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Barnett, A.

Battaglia, C.

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Beckers, T.

Bellettato, M.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Benkstein, K. D.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Bermel, P.

Bielawny, A.

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Biswas, R.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).
[Crossref]

Bittkau, K.

Boccard, M.

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

Botten, L. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Bozzola, A.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref]

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Towards the Lambertian limit in thin film silicon solar cells with photonic structures,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 491–496.

Brendel, R.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

Burresi, M.

Busch, K.

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

Cai, T.

Campa, A.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
[Crossref]

Campbell, P.

P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10, 2410–2415 (1993).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Carius, R.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Catchpole, K. R.

S. Mokkapat and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Chang, H.-C.

Charrière, M.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Chen, C.

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref]

Chen, J.-Z.

Chen, P.-Y.

Chen, S.

Cheng, I.-C.

Creazzo, T.

Cui, Y.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Deckman, H. W.

Deinega, A.

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
[Crossref]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
[Crossref]

Demésy, G.

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112, 074326 (2012).
[Crossref]

Depauw, V.

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Despeisse, M.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Desta, D.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Ding, H.

Ding, K.

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Dross, F.

Drouard, E.

Duan, X.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

El Daif, O.

El Ghazaly, S.

Eriksen, E. H.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Escarré, J.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Eyderman, S.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
[Crossref]

Fahr, S.

Falcão, B. P.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Fan, R.-H.

Fan, S.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Fave, A.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Feng, N.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Fountaine, K. T.

Frank, A. J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Gomard, G.

Gonzalez-Acevedo, B.

Goossens, A.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
[Crossref]

Gordon, I.

Gösele, U.

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Haase, C.

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

Haase, F.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

Halaoui, L. I.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Han, S. E.

T. Cai and S. E. Han, “Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells,” J. Opt. Soc. Am. B 32, 2264–2270 (2015).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref]

Haug, F. J.

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Haug, F.-J.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

Hermansen, P.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

Ho, C.-C.

Ho, C.-I.

Hölscher, H.

Hong, A. J.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Hong, C.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Hong, W.

Honsberg, C.

Hou, J.

Hsiao, H.-H.

Hsu, C.-M.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref]

Huang, X.-R.

Hughes, S.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
[Crossref]

Huisman, C. L.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
[Crossref]

Hünig, R.

Jamois, C.

Jensen, P. B.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Jeppesen, B. R.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Joannopoulos, J. D.

John, S.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
[Crossref]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112, 074326 (2012).
[Crossref]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

Kaminski, A.

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Kendall, C. G.

Kim, J.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Kimerling, L. C.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Kirchartz, T.

Knez, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Kowalczewski, P.

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
[Crossref]

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Towards the Lambertian limit in thin film silicon solar cells with photonic structures,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 491–496.

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Krc, J.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
[Crossref]

Lalouat, L.

Lambertz, A.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Larsen, A. N.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Lederer, F.

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[Crossref]

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Lee, S. M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Lee, S.-C.

Lee, W.-L.

Lemiti, M.

Lemmer, U.

Letartre, X.

Lewis, B. A.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Lewis, N. S.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Li, X.

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Lin, C.

Liscidini, M.

Liu, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Liu, W.

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Luo, C.

Mahpeykar, S. M.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Mallick, S. B.

Mallouk, T. E.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Manga Rao, V. S. C.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
[Crossref]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Martijn de Sterke, C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Martínez, L. J.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Matthias, S.

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

McPhedran, R. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Meng, L.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Meng, X.

Menon, R.

Michel, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

Miclea, P. T.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Míguez, H.

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005).
[Crossref]

Mihi, A.

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005).
[Crossref]

Mokkapat, S.

S. Mokkapat and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

Müller, F.

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

Mutitu, J. G.

Nah, J. W.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Nam, W. I.

Naseem, H.

Nelson, J.

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

Nishimura, S.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Orobtchouk, R.

Paetzold, U. W.

Pahud, C.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Park, Y.

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

Peng, R.-W.

Pereira, R. N.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Peretti, R.

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21, A515–A527 (2013).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Petermann, J. H.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

Peters, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Peumans, P.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 865 (2010).
[Crossref]

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Povinelli, M. L.

Pratesi, F.

Prather, D. W.

Ram, S. K.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Rech, B.

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

Riboli, F.

Rizzoli, R.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Rockstuhl, C.

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[Crossref]

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Rojas, E. G.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

Ross, F. M.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Roxlo, C. B.

Ruan, Z.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Russell, B. K.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Sadana, D. K.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Said, T. M.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Schauer, S.

Schilling, J.

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

Schmager, R.

Schmidt, J.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

Schoonman, J.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
[Crossref]

Seassal, C.

Senoussaoui, N.

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

Shao, M.-R.

Shi, S.

Shi, Y.

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Shin, B.

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Singhal, A. V.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Söderström, K.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Söderström, T.

Song, Y. M.

Steidl, L.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Stiebig, H.

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

Sturmberg, B. C. P.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Summonte, C.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Topic, M.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
[Crossref]

Trompoukis, C.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Üpping, J.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Van de Lagemaat, J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

Van Vlack, C. P.

C. P. Van Vlack, “Dyadic Green functions and their applications,” Ph.D. thesis (Queen’s University, 2012).

Viktorovitch, P.

Vynck, K.

Wang, M.

Wang, P.

Wang, X.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Wehrspohn, R. B.

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

Wei, J.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Wiersma, D. S.

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

Worgull, M.

Xiong, Q.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Yablonovitch, E.

Yang, C.

Yang, F.

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Yang, T.

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Yao, P.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
[Crossref]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Yoo, Y. J.

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Zahren, C.

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref]

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

Zentel, R.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Zhu, L.-H.

Zielke, D.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

ACS Nano (1)

J. Kim, A. J. Hong, J. W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6, 265–271 (2012).
[Crossref]

Adv. Eng. Mater. (1)

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Eng. Mater. 2, 628–633 (2012).
[Crossref]

Adv. Opt. Mater. (1)

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Appl. Phys. Lett. (8)

J. Schilling, F. Müller, S. Matthias, R. B. Wehrspohn, U. Gösele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78, 1180–1182 (2001).
[Crossref]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

IEEE Electron Device Lett. (1)

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Electron Device Lett. 54, 1926–1933 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. Van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003).
[Crossref]

J. Appl. Phys. (11)

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).
[Crossref]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105, 083107 (2009).
[Crossref]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

C. Battaglia, M. Boccard, F. J. Haug, and C. Ballif, “Light trapping in solar cells: when does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112, 094504 (2012).
[Crossref]

S. Mokkapat and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[Crossref]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112, 074326 (2012).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113, 154315 (2013).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113, 224501 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

H. Stiebig, C. Haase, C. Zahren, B. Rech, and N. Senoussaoui, “Thin-film silicon solar cells with grating couplers—An experimental and numerical study,” J. Non-Cryst. Solids 352, 1949–1952 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005).
[Crossref]

Laser Photon. Rev. (1)

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499–516 (2010).
[Crossref]

Nano Energy (1)

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, A. N. Larsen, and P. Balling, “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Nano Lett. (2)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 865 (2010).
[Crossref]

Nat. Photonics (1)

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[Crossref]

Opt. Express (22)

H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24, A650–A666 (2016).
[Crossref]

W. I. Nam, Y. J. Yoo, and Y. M. Song, “Geometrical shape design of nanophotonic surfaces for thin film solar cells,” Opt. Express 24, A1033–A1044 (2016).
[Crossref]

J. Hou, W. Hong, X. Li, C. Yang, and S. Chen, “Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thinfilm solar cells,” Opt. Express 25, A922–A931 (2017).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
[Crossref]

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[Crossref]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[Crossref]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19, A865–A874 (2011).
[Crossref]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19, A1148–A1154 (2011).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[Crossref]

L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, “Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal,” Opt. Express 21, A313–A323 (2013).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21, A515–A527 (2013).
[Crossref]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
[Crossref]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21, A872–A882 (2013).
[Crossref]

P. Wang and R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of states,” Opt. Express 22, A99–A110 (2014).
[Crossref]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22, A930–A940 (2014).
[Crossref]

P.-Y. Chen, H.-H. Hsiao, C.-I. Ho, C.-C. Ho, W.-L. Lee, H.-C. Chang, S.-C. Lee, J.-Z. Chen, and I.-C. Cheng, “Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells,” Opt. Express 22, A1128–A1136 (2014).
[Crossref]

O. H. Al Zoubi, T. M. Said, M. A. Alher, S. El Ghazaly, and H. Naseem, “Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications,” Opt. Express 23, A767–A778 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Phys. Status Solidi A (2)

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S. M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205, 2796–2810 (2008).
[Crossref]

Y. Shi, X. Wang, W. Liu, T. Yang, and F. Yang, “Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating,” Phys. Status Solidi A 212, 312–316 (2015).
[Crossref]

Prog. Photovoltaics (2)

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43  μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovoltaics 20, 1–5 (2012).
[Crossref]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[Crossref]

Solar Energy Mater. Sol. Cells (1)

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Solar Energy Mater. Sol. Cells 85, 115–124 (2005).
[Crossref]

Other (6)

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Towards the Lambertian limit in thin film silicon solar cells with photonic structures,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 491–496.

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

R. B. Wehrspohn, U. Rau, and A. Gombert, eds., Photon Management in Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ .

Compute Canada, http://www.computecanada.ca .

C. P. Van Vlack, “Dyadic Green functions and their applications,” Ph.D. thesis (Queen’s University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Complex dielectric optical properties and (c) the Lambertian limit for c-Si and (b), (d) GaAs. The Lambertian limits for film thickness of 100 nm are given by Eq. (1) (green dotted), Eq. (2) (orange dotted-dashed), Eq. (3) (blue dashed), and Eq. (4) (blue solid). The reference absorption for a flat film without a backreflector or anti-reflection entrance layer (black) is shown, as well as the absorption length (dashed red) given by α1=λ/4πκ. Markers show the longest wavelengths that can be completely absorbed by an unpatterned slab of thickness 100 nm, 500 nm, and 1500 nm, from left to right.
Fig. 2.
Fig. 2. (a) An xz-view schematic view of the simulation setup for modeling absorption enhancements due to rough surface scattering. (b) An example realization of a Gaussian rough surface, produced using Lumerical’s built-in rough surface object (see text).
Fig. 3.
Fig. 3. (a) Absorption properties for c-Si of the flat (colored) film, 2D Lambertian limit [Eq. (3), dashed], 3D Lambertian limit [Eq. (4), solid], and wavelength ranges of interest (shaded), for 100 nm (blue), 500 nm (green), and 1500 nm (orange) film thicknesses. (b) Absolute and (c) relative differences between the flat film and 2D Lambertian limit, respectively.
Fig. 4.
Fig. 4. Integrated absorption for a 2D c-Si rough surface, normalized to the 2D Lambertian integrated absorption given by Eq. (3), for three film thicknesses: (a) 100 nm, (b) 500 nm, and (c) 1500 nm. Six sets of data are shown along with the mean (bottom), and each set contains 212 (441) data points. No data smoothing, fitting, or weighting has been done. Wavelength integration limits are λ=[400,1100]  nm.
Fig. 5.
Fig. 5. Effect of pitch, in units of Lx, on the integrated absorption, normalized to the 2D Lambertian integrated absorption given by Eq. (3), for each film thickness of c-Si. The roughness parameters Lx and σRMS were set to 160 nm and 240 nm, respectively, and 20 sets of data were taken at pitches of 4, 12, 31, 50, and 80 times Lx. At a pitch of 4Lx (640 nm), the STD decreases, likely due to the increased PC behavior.
Fig. 6.
Fig. 6. Integrated absorption, averaged for six sets of data (see text), normalized to the 2D Lambertian limit for c-Si, for each of the four wavelength ranges of interest: λ1 (○), λ2 (×), λ3 (Δ), and full range (+). Errors were obtained from the standard deviation data highlighted in Fig. 5.
Fig. 7.
Fig. 7. Integrated absorption for a 3D rough c-Si surface, normalized to the Lambertian integrated absorption given by Eq. (4), for film thicknesses of (a) 100 nm, (b) 500 nm, and (c) 1500 nm. Each plot is made up of 36 data points, using no data smoothing, fitting, or weighting. Wavelength integration limits are λ=[400,1100]  nm.
Fig. 8.
Fig. 8. Integrated absorption, normalized to the 3D Lambertian limit for c-Si given by Eq. (4), for each of the four wavelength ranges of interest: λ1 (○), λ2 (×), λ3 (Δ), and full range (+). A theoretical fit (black dashed) is given, based on a modified Beer–Lambert law [Eq. (8)]. The fit parameters are summarized by Table 1.
Fig. 9.
Fig. 9. Average absorption and reflection results for a 2D rough c-Si surface on top of three depths of substrate: 100 nm (blue), 500 nm (green), and 1500 nm (orange). The rough surface has a fixed correlation length of 100 nm. Error bars show the standard deviation from six samples of each value of σrms. Absorption within the rough surface (black dashed) and incident reflection (black solid) are shown, which were assumed to be negligible in the Lambertian limit.
Fig. 10.
Fig. 10. Schematic of a (a) PC slab and (b) PC nanowire geometry. Photonic band structure diagrams for (c) c-Si slab (TE modes) and (d) GaAs wires (TM modes), calculated using FDTD. White dashed lines show the frequency range of interest (corresponding to λ=[300,1100]  nm for c-Si and λ=[300,900]  nm for GaAs). The light line is shown by the dashed black line (ω=c|k|). Inset: high symmetry points of a square lattice in reciprocal space. The spectrum, S, is calculated using Eq. (11).
Fig. 11.
Fig. 11. Short-circuit current density as a function of radius, filling fraction, geometry, and material for perfectly ordered PC patterns. The height is fixed at 1000 nm, and the PC extends through the entire dielectric thickness, with a silver BR and glass filling for a flush slab.
Fig. 12.
Fig. 12. Short-circuit current density [Eq. (7)] of the disordered (a) GaAs wire, (b) c-Si wire, (c) GaAs hole, and (d) c-Si hole divided by the short-circuit current density of the unpatterned structure of the same height (1 μm) and material. The optimized ordered pattern (black dashed line) is given, as well as positional (blue triangles) and radial (red circles) disordered patterns. Shaded areas represent the approximate error in the optimized PC designs, based on the numerical error associated with finite grid sizes in FDTD.
Fig. 13.
Fig. 13. Total “regularized” LDOS (black line) from a finite-size dipole, for the (a) c-Si nanohole and (b) GaAs nanowire geometries, in Purcell factor units defined by Eq. (14). The total GF is calculated in the center of the PC on the z-axis, and at high-symmetry points within the absorbing material, shown in the inset by red dots (c-Si left, GaAs right). The dipole is linear and has an effective radius of 7.4 nm (Yee cells of 12  nm3). For comparison, the filled areas show the LDOS for each structure with a constant, real index of refraction set to n=4. A simulation size of 13×13 and 14×14 unit cells for GaAs and c-Si, respectively, was used with PML boundary conditions in x, y, and z to create a suitable imitation of periodicity (actual sizes of 4.68×4.68 and 7.84×7.84  μm). It is important to note that only one dipole is used in the simulation region so that we sum over k-space, as appropriate for the defined GF.
Fig. 14.
Fig. 14. Partial photonic band structure for GaAs nanowires, as described in Fig. 10, where the index of refraction is (a) real and (b) complex. The dashed black line represents the light line (ω=c|k|) and the solid black line indicates the slice of k-space which is shown in (c) and (d), showcasing the relationship between mode peak/broadening and imaginary index of refraction, κ (blue dashed).

Tables (1)

Tables Icon

Table 1. Summary of Fit Parameters, F, in Eq. (8), for Integrated Absorption Data Presented in Fig. 8, Using a Modified Beer–Lambert Law

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A=1exp(2n2αd),
A=1exp(2αd)1(11/n2)exp(2αd).
A2D=11π02π0π/2cos(θ)sin(θ)eαdcosθdθdϕ
A3D=112π02π0π/2cos(θ)eαdcos(θ)dθdϕ,
A(λ)=1T1(λ)T0(λ),
Aint=400  nm1100  nmA(λ)ϕAM1.5(λ)max[ϕAM1.5]dλ,
Jsc=ehc400  nm1100  nmλA(λ)ϕAM1.5(λ)dλ.
Afit=λminλmax1exp(α(λ)deff)dλ,
ABL=1exp(α(λ)d),
ff=π(ra)2,
S=FT[mEm(t)w(τc,τw)],
[××(ωc)2ε(r,ω)]G¯(r,r,ω)=(ωc)2I¯δ(rr),
Gnm(r,r,ω)n^·G¯(r,r,ω)·m^=En(r;ω)Pm(r,ω)=FT[En(r;t)]FT[Pm(r,t)],
ρ(r,ω)=n=x,y,zIm[Gnn(r,r,ω)]Im[Ghom(r,r,ω)],

Metrics