Abstract

With the advance of laser technology, there are many applications exciting surface plasmons with very short pulses of light. We perform a quantitative study of field amplification of surface plasmons excited by short light pulses. The dependence of the maximum intensity of the electromagnetic fields at the metal–dielectric interface is obtained as a function of the pulse duration. A Gaussian light pulse is used as the excitation source and the propagation of this pulse is computed on an attenuated total reflection system for the Kretschmann geometry. The field enhancement produced by the pulse is about 80% of the steady-state case when the width of the pulse is half the decay time of the surface plasmon, and it gets close to 95% when the width is equal to the time decay. We obtain an approximate expression for the field amplification as a function of the pulse width that is close to the exact calculation. Additionally, an approximate expression is obtained for the enhancement of the fields when surface plasmons are excited with a narrow spatial width beam.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact surface plasmon-enhanced fluorescence biochip

Koji Toma, Milan Vala, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek
Opt. Express 21(8) 10121-10132 (2013)

Excitation of surface plasmons by finite width beams

Eric F. Y. Kou and Theodor Tamir
Appl. Opt. 28(6) 1169-1177 (1989)

Incidence angles for optimized ATR excitation of surface plasmons

Eric F. Y. Kou and Theodor Tamir
Appl. Opt. 27(19) 4098-4103 (1988)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [Crossref]
  2. S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
    [Crossref]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  4. N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
    [Crossref]
  5. Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
    [Crossref]
  6. C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
    [Crossref]
  7. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
    [Crossref]
  8. L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
    [Crossref]
  9. F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
    [Crossref]
  10. A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
    [Crossref]
  11. G. Brucoli and L. Martin-Moreno, “Comparative study of surface plasmon scattering by shallow ridges and grooves,” Phys. Rev. B 83, 045422 (2011).
    [Crossref]
  12. S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
    [Crossref]
  13. A. Otto, “Excitation of non-radiative surface plasma wave in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [Crossref]
  14. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2136 (1968).
  15. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6, 122–124 (1981).
    [Crossref]
  16. E. F. Kou and T. Tamir, “Excitation of surface plasmons by finite width beams,” Appl. Opt. 28, 1169–1177 (1989).
    [Crossref]
  17. D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, “Optical field enhancement by long-range surface plasma waves,” Appl. Opt. 21, 3993–3995 (1982).
    [Crossref]
  18. Y. Lou, H. Pan, T. Zhu, and Z. Ruan, “Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings,” J. Opt. Soc. Am. B 33, 819–824 (2016).
    [Crossref]
  19. Z. Ruan, H. Wu, M. Qiu, and S. Fan, “Spatial control of surface plasmon polariton excitation at planar metal surface,” Opt. Lett. 39, 3587–3590 (2014).
    [Crossref]
  20. B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).
  21. X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
    [Crossref]
  22. Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36, 250–252 (2011).
    [Crossref]
  23. A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
    [Crossref]
  24. E. Rahimi and K. Sendur, “Femtosecond pulse shaping by ultrathin plasmonic metasurfaces,” J. Opt. Soc. Am. B 33, A1–A7 (2016).
    [Crossref]
  25. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
    [Crossref]
  26. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
    [Crossref]

2016 (9)

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
[Crossref]

L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
[Crossref]

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

Y. Lou, H. Pan, T. Zhu, and Z. Ruan, “Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings,” J. Opt. Soc. Am. B 33, 819–824 (2016).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
[Crossref]

E. Rahimi and K. Sendur, “Femtosecond pulse shaping by ultrathin plasmonic metasurfaces,” J. Opt. Soc. Am. B 33, A1–A7 (2016).
[Crossref]

2014 (3)

Z. Ruan, H. Wu, M. Qiu, and S. Fan, “Spatial control of surface plasmon polariton excitation at planar metal surface,” Opt. Lett. 39, 3587–3590 (2014).
[Crossref]

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

2013 (1)

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

2012 (2)

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

2011 (2)

Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36, 250–252 (2011).
[Crossref]

G. Brucoli and L. Martin-Moreno, “Comparative study of surface plasmon scattering by shallow ridges and grooves,” Phys. Rev. B 83, 045422 (2011).
[Crossref]

2010 (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

2008 (1)

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

2006 (1)

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

1989 (1)

1982 (1)

1981 (1)

1968 (2)

A. Otto, “Excitation of non-radiative surface plasma wave in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2136 (1968).

Abdulhalim, I.

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

Adam, P. M.

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Bachelot, R.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Bauer, M.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Beyer, H.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Blaize, S.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Brucoli, G.

G. Brucoli and L. Martin-Moreno, “Comparative study of surface plasmon scattering by shallow ridges and grooves,” Phys. Rev. B 83, 045422 (2011).
[Crossref]

Caiseda, C.

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Chen, J.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Chin, H.

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

Couteau, C.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Craig, A. E.

Cunovic, S.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Dabirian, A.

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

de la Cruz, S.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Deck, R. T.

Dimler, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Eftekharinia, B.

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

Ershov, A. E.

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
[Crossref]

Fan, S.

Fasano, J. J.

Fischer, A.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Fiutowski, J.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Ford, G. W.

Gaspar-Armenta, J. A.

L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
[Crossref]

Gavrilyuk, A. P.

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
[Crossref]

Geng, W.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Gong, Q.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Griva, I.

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Grobmann, M.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Guo, Y.

Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
[Crossref]

Hashimoto, S.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

Hesselink, L.

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

Hickernell, R. K.

Horak, P.

Huang, F.

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Jameson, R. S.

Jiang, X.

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Kang, J. H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

Karpov, S. V.

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
[Crossref]

Kihm, H. W.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

Kim, D. S.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

Klick, A.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Kou, E. F.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2136 (1968).

Lee, K. G.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

Lemke, C.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Li, A.

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

Li, K.

Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
[Crossref]

Li, S.

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Li, Z.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Liao, H.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Lou, Y.

MacDonald, K. F.

Macías, D.

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Martinez, L.

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Martin-Moreno, L.

G. Brucoli and L. Martin-Moreno, “Comparative study of surface plasmon scattering by shallow ridges and grooves,” Phys. Rev. B 83, 045422 (2011).
[Crossref]

Mayoral-Astorga, L. A.

L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
[Crossref]

Méndez, E. R.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Miller, D. A. B.

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

Moshaii, A.

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

Nabavi, S. H.

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

Otto, A.

A. Otto, “Excitation of non-radiative surface plasma wave in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Pan, H.

Park, Q.-H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Qiu, M.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rahbany, N.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Rahimi, E.

Ramos-Mendieta, F.

L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
[Crossref]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Ruan, Z.

Rubahn, H.-G.

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Salas-Montiel, R.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Sámson, Z. L.

Sarid, D.

Schneider, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Sendur, K.

Shaw, K.

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Strüber, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Sun, X.

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Tamir, T.

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

Voronine, D. V.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Weber, W. H.

Weingarten, D.

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

Wu, H.

Yang, H.

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Yang, J.

Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
[Crossref]

Yin, X.

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

Yuan, H.

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

Yue, S.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Zhang, X.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

Zheludev, N. I.

Zhu, T.

AIP Adv. (1)

L. A. Mayoral-Astorga, J. A. Gaspar-Armenta, and F. Ramos-Mendieta, “Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields,” AIP Adv. 6, 045316 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Klick, S. de la Cruz, C. Lemke, M. Grobmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, and M. Bauer, “Amplitude and phase of surface plasmon polaritons excited at a step edge,” Appl. Phys. B 122, 79 (2016).
[Crossref]

Appl. Phys. Lett. (3)

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmons generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[Crossref]

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[Crossref]

X. Yin, L. Hesselink, H. Chin, and D. A. B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance,” Appl. Phys. Lett. 89, 041102 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Photochem. Photobiol. C (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

J. Phys. Chem. C (1)

S. K. Srivastava, A. Li, S. Li, and I. Abdulhalim, “Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS,” J. Phys. Chem. C 120, 28735–28742 (2016).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

G. Brucoli and L. Martin-Moreno, “Comparative study of surface plasmon scattering by shallow ridges and grooves,” Phys. Rev. B 83, 045422 (2011).
[Crossref]

Phys. Status Solidi B (1)

S. de la Cruz, E. R. Méndez, D. Macías, R. Salas-Montiel, and P. M. Adam, “Compact surface structures for the efficient excitation of surface plasmon-polaritons,” Phys. Status Solidi B 249, 1178–1187 (2012).
[Crossref]

Plasmonics (4)

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2016).
[Crossref]

Y. Guo, J. Yang, and K. Li, “Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings,” Plasmonics 11, 11–15 (2016).
[Crossref]

F. Huang, X. Jiang, H. Yuan, S. Li, H. Yang, and X. Sun, “Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens,” Plasmonics 11, 1637–1643 (2016).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: effect of pulse duration,” Plasmonics 11, 403–410 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA 107, 5329–5333 (2010).
[Crossref]

Procedia Comput. Sci. (1)

C. Caiseda, I. Griva, L. Martinez, K. Shaw, and D. Weingarten, “Numerical optimization technique for optimal design of the n grooves surface plasmon grating coupler,” Procedia Comput. Sci. 29, 2145–2151 (2014).
[Crossref]

Sci. Iran. F (1)

B. Eftekharinia, S. H. Nabavi, A. Moshaii, and A. Dabirian, “High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure,” Sci. Iran. F 21, 2508–2512 (2014).

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of non-radiative surface plasma wave in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Field enhancement as a function of frequency, using the Drude model for the metal–dielectric function with damping factor γ=ωp/100. The inset shows the ATR-Kretschmann system and the coordinate axes.
Fig. 2.
Fig. 2. Enhancement factor expressed as the ratio of absolute square of the electric field as a function of metal thickness in nanometers. The straight green line corresponds to the value from the Eq. (13). Fixed frequency ωωp=0.5, damping factor γ=ωp/100 (Kretschmann geometry).
Fig. 3.
Fig. 3. Enhancement factor of the square of the absolute value of the electric field as a function of the normalized time pulse width. Parameters used are frequency ωωp=0.5, damping factor γ=ωp/100, metal thickness t=110  nm, and angle of incidence θ=54.43°.
Fig. 4.
Fig. 4. Enhancement factor of the ratio of absolute square of the electric field as a function of beam width for a frequency ωωp=0.5, damping factor γ=ωp/100, metal thickness t=110  nm, and angle of incidence θ=54.43°.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

|ESP|2|E0|22(ε2)1/2(ε2ε3)ε31/2ε2,
|Esp|2|E0|2=1ε3a1|ε2|2+12|ε2|2ε2,
ai=[εi(ε11)ε1]2.
|Esp|2|E0|2=ε1ε3|Hsp|2|H0|2.
H0(x,y,t)=H0z^exp[i(kxx+kyyωt)],
E0(x,y,t)=E0exp[i(kxx+kyyωt)].
S=c2k8πωε1|H0|2.
AS·da=c2ky18πωε1L(x1x)|H0|2,
AS·da=Lc2ky1|H0|28πωε1x1exp[2ksp(x1x)]dx=Lky1c2|H0|216πωε1ksp.
Hz(x,y,z)=Hspexp[i(kxxky2y)],
Hz(x,y,z)=Hspexp[i(kxx+ky3y)],
AS·da=Lc2kx16πω(1ky3ε31ky2ε2)|Hsp|2.
|Esp|2|E0|2=ky1ε2kxkspky2ky3ky3ε3ky2ε2.
ε(ω)=1ωp2ω(ω+iγ),
Hz(x,y,t)=H0exp{12(tt0σt)2+i(kxx+kyyωct)}
Hz(x,y,t)=σtH02πexp{12(ωcωσω)2}exp{i(ωcω)t0+i(kxx+kyyωt)}dω,
Hz(x,y,t)=σtH02πr(kx,ω)exp{12(ωcωσω)2}exp{i(ωcω)t0+i(kxxkyyωt)}dω,
Hz(x,y,t)=σtH02πt(kx,ω)exp{12(ωcωσω)2}exp{i(ωcω)t0+i(kxx+kyyωt)}dω,
AS·da=Lky1c28πωε1|H0|22σtπaexp{σt2(b24agσt2)/4a}erfc(bσt2a),
a=(1vspsin(θ)c/ε11/2)2,b=2σt2[(1vspsin(θ)c/ε11/2)t0kspσt2],g=t02σt2,
|EspE0|2=ky1ε2kxσtπaexp{σt2(b24agσt2)/4a}erfc(bσt2a)ky2ky1ky2ε3ky1ε2.
AS·da=Lky1c2|H0|28πωε1x1exp{(xx0σx)22ksp(x1x)}dx.
|EspE0|2=ky1ε2kxσxπ1/2exp{(b24ag)/4a}·erfc(b2a)ky2ky1ky2ε3ky1ε2,
b=2[(x1x0)+σx2ksp]σx2.
Hz(x,y)=σxH02πexp{12(kxσk)2}exp{ikxx0+ikxx+ikyy}dkx,
Hz(x,y)=σxH02πexp{12(kxrcosθkyrsinθσk)2}t(kxr,ω)exp{i(kxrcosθ+kyrsinθ)x0+i(kxrx+kyry)}dkxr,

Metrics