Abstract

Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require intelligent algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a deep-learning (DL) architecture with model predictive control (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser that is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation

Xing Fu, Steven L. Brunton, and J. Nathan Kutz
Opt. Express 22(7) 8585-8597 (2014)

Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers

R. I. Woodward and E. J. R. Kelleher
Opt. Lett. 42(15) 2952-2955 (2017)

High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm

Xing Fu and J. Nathan Kutz
Opt. Express 21(5) 6526-6537 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
    [Crossref]
  2. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  3. G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).
  4. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]
  5. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006).
    [Crossref]
  6. M. Krstić and H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica 36, 595–601 (2000).
    [Crossref]
  7. S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
    [Crossref]
  8. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
    [Crossref]
  9. U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
    [Crossref]
  10. U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
    [Crossref]
  11. R. Woodward and E. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
  12. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37, 3426–3428 (2012).
    [Crossref]
  13. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21, 20626–20631 (2013).
    [Crossref]
  14. D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34, 1442–1452 (2016).
    [Crossref]
  15. F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
    [Crossref]
  16. Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu, “Failure prediction using machine learning and time series in optical network,” Opt. Express 25, 18553–18565 (2017).
    [Crossref]
  17. D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).
  18. H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
    [Crossref]
  19. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Extremum-seeking control of a beam pattern of a reconfigurable holographic metamaterial antenna,” J. Opt. Soc. Am. A 33, 59–68 (2016).
    [Crossref]
  20. O. Albert, L. Sherman, G. Mourou, T. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000).
    [Crossref]
  21. A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
    [Crossref]
  22. TensorFlow, https://www.tensorflow.org .
  23. C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
    [Crossref]
  24. Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
    [Crossref]
  25. J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. J. Control Autom. Syst. 9, 415–424 (2011).
    [Crossref]
  26. S. Mohanty, “Artificial neural network based system identification and model predictive control of a flotation column,” J. Process Control 19, 991–999 (2009).
    [Crossref]
  27. H. Weisberg Andersen and M. Kümmel, “Evaluating estimation of gain directionality,” J. Process Control 2, 67–86 (1992).
    [Crossref]
  28. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).
  29. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
    [Crossref]
  30. D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in 31st International Conference on Machine Learning, Machine Learning Research, E. P. Xing and T. Jebara, eds. (PMLR, 2014), vol. 32, pp. 1278–1286.
  31. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
    [Crossref]
  32. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 1097–1105.
  33. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
    [Crossref]
  34. X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
    [Crossref]
  35. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signals Syst. 2, 303–314 (1989).
    [Crossref]
  36. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
    [Crossref]
  37. K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
    [Crossref]
  38. K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).
  39. H. Sedghi and A. Anandkumar, “Training input-output recurrent neural networks through spectral methods,” arXiv:1603.00954 (2016).
  40. H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
    [Crossref]
  41. A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
    [Crossref]
  42. C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
    [Crossref]
  43. E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009).
    [Crossref]
  44. E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
    [Crossref]
  45. R. C. Jones, “A new calculus for the treatment of optical systems. I. description and discussion of the calculus,” J. Opt. Soc. Am. A 31, 488–493 (1941).
    [Crossref]
  46. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, eds., Semi-Supervised Learning with Deep Generative Models (2014).
  47. T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum, eds., Deep Convolutional Inverse Graphics Network (2015).
  48. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
  49. D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).
  50. D. P. Kingma and J. Ba, eds., Adam: A Method for Stochastic Optimization (2015).
  51. R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational complexity,” in Backpropagation (L. Erlbaum Associates Inc., 1995), pp. 433–486.
  52. S. Hochreiter and S. Jürgem, “Long short-term memory,” Neural Comput. 9, 1735–1780 (1997).
    [Crossref]
  53. J. Martens and I. Sutskever, eds., Learning Recurrent Neural Networks with Hessian-Free Optimization (2011).
  54. I. Lenz, R. Knepper, and A. Saxena, eds., DeepMPC: Learning Deep Latent Features for Model Predictive Control (2015).
  55. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
    [Crossref]
  56. G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
    [Crossref]
  57. Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary vectors using two layer networks,” in Advances in Neural Information Processing Systems (1992), pp. 912–919.
  58. M. Welling, M. Rosen-zvi, and G. E. Hinton, “Exponential family harmoniums with an application to information retrieval,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT, 2005), pp. 1481–1488.
  59. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in 13th International Conference on Artificial Intelligence and Statistics, Machine Learning Research, Y. W. Teh and M. Titterington, eds. (PMLR, 2010), vol. 9, pp. 249–256.
  60. https://github.com/thombau/UW_Seattle_1/ .

2017 (4)

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu, “Failure prediction using machine learning and time series in optical network,” Opt. Express 25, 18553–18565 (2017).
[Crossref]

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

2016 (6)

D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34, 1442–1452 (2016).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Extremum-seeking control of a beam pattern of a reconfigurable holographic metamaterial antenna,” J. Opt. Soc. Am. A 33, 59–68 (2016).
[Crossref]

U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
[Crossref]

R. Woodward and E. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).

2015 (3)

U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

2014 (2)

2013 (3)

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21, 20626–20631 (2013).
[Crossref]

Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
[Crossref]

2012 (2)

X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37, 3426–3428 (2012).
[Crossref]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

2011 (1)

J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. J. Control Autom. Syst. 9, 415–424 (2011).
[Crossref]

2010 (1)

2009 (4)

S. Mohanty, “Artificial neural network based system identification and model predictive control of a flotation column,” J. Process Control 19, 991–999 (2009).
[Crossref]

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009).
[Crossref]

2008 (2)

A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
[Crossref]

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

2006 (3)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006).
[Crossref]

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
[Crossref]

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
[Crossref]

2000 (3)

M. Krstić and H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica 36, 595–601 (2000).
[Crossref]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

O. Albert, L. Sherman, G. Mourou, T. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000).
[Crossref]

1997 (1)

S. Hochreiter and S. Jürgem, “Long short-term memory,” Neural Comput. 9, 1735–1780 (1997).
[Crossref]

1992 (1)

H. Weisberg Andersen and M. Kümmel, “Evaluating estimation of gain directionality,” J. Process Control 2, 67–86 (1992).
[Crossref]

1990 (1)

K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
[Crossref]

1989 (3)

G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signals Syst. 2, 303–314 (1989).
[Crossref]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[Crossref]

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
[Crossref]

1941 (1)

R. C. Jones, “A new calculus for the treatment of optical systems. I. description and discussion of the calculus,” J. Opt. Soc. Am. A 31, 488–493 (1941).
[Crossref]

Achner, A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Agåker, M.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Al Khawli, T.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Al-Arashi, W. H.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Albert, O.

Amrani, F.

Anandkumar, A.

H. Sedghi and A. Anandkumar, “Training input-output recurrent neural networks through spectral methods,” arXiv:1603.00954 (2016).

Andral, U.

Antonoglou, I.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Barillot, T. R.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Beattie, C.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Belforte, D.

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Bellemare, M. G.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Bengio, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in 13th International Conference on Artificial Intelligence and Statistics, Machine Learning Research, Y. W. Teh and M. Titterington, eds. (PMLR, 2010), vol. 9, pp. 249–256.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Berrah, N.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Billard, F.

Bostedt, C.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Bozek, J. D.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Brunton, S. L.

Buck, J.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Bucksbaum, P. H.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Buguet, J.

Büscher, C.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Carron Montero, S.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Clarkson, W.

Coffee, R. N.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Cooper, B.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Courville, A.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).

Cryan, J. P.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Cybenko, G.

G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signals Syst. 2, 303–314 (1989).
[Crossref]

Deng, Q.

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

Dieleman, S.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Ding, E.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009).
[Crossref]

Dong, M.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Eppelt, U.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Feifel, R.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Fidjeland, A. K.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Fodil, R. S.

Frasinski, L. J.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Freund, Y.

Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary vectors using two layer networks,” in Advances in Neural Information Processing Systems (1992), pp. 912–919.

Fu, X.

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

Fukuzawa, H.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Galler, A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Garcia, C. E.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
[Crossref]

Ghosh, J.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Glorot, X.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in 13th International Conference on Artificial Intelligence and Statistics, Machine Learning Research, Y. W. Teh and M. Titterington, eds. (PMLR, 2010), vol. 9, pp. 249–256.

Goodfellow, I.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Graepel, T.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Grancharova, A.

A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
[Crossref]

Graves, A.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Grelu, P.

Grewe, D.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Guez, A.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Hand, D. J.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Hartmann, G.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Hartmann, N.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Hassabis, D.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Haussler, D.

Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary vectors using two layer networks,” in Advances in Neural Information Processing Systems (1992), pp. 912–919.

Helml, W.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Hertz, E.

Hinton, G.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
[Crossref]

Hinton, G. E.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
[Crossref]

M. Welling, M. Rosen-zvi, and G. E. Hinton, “Exponential family harmoniums with an application to information retrieval,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT, 2005), pp. 1481–1488.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 1097–1105.

Hochreiter, S.

S. Hochreiter and S. Jürgem, “Long short-term memory,” Neural Comput. 9, 1735–1780 (1997).
[Crossref]

Holton, C.

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Hornik, K.

K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
[Crossref]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[Crossref]

Huang, A.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Ilchen, M.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Inoussa, G.

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

Ivanenko, A.

Jeschke, S.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Johansen, T. A.

A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
[Crossref]

Johnson, A. S.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Johnson, M. C.

Jones, R.

Jones, R. C.

R. C. Jones, “A new calculus for the treatment of optical systems. I. description and discussion of the calculus,” J. Opt. Soc. Am. A 31, 488–493 (1941).
[Crossref]

Jürgem, S.

S. Hochreiter and S. Jürgem, “Long short-term memory,” Neural Comput. 9, 1735–1780 (1997).
[Crossref]

Kalchbrenner, N.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Kavukcuoglu, K.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Kelleher, E.

R. Woodward and E. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).

Khan, F. N.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Khripunov, S.

King, H.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Kingma, D. P.

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).

Knie, A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Kobtsev, S.

Kocijan, J.

A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
[Crossref]

Krizhevsky, A.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 1097–1105.

Krstic, M.

M. Krstić and H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica 36, 595–601 (2000).
[Crossref]

Kukarin, S.

Kumar, V.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Kumaran, D.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Kümmel, M.

H. Weisberg Andersen and M. Kümmel, “Evaluating estimation of gain directionality,” J. Process Control 2, 67–86 (1992).
[Crossref]

Kundtz, N. B.

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Extremum-seeking control of a beam pattern of a reconfigurable holographic metamaterial antenna,” J. Opt. Soc. Am. A 33, 59–68 (2016).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009).
[Crossref]

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006).
[Crossref]

Lanctot, M.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Lau, A. P. T.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Leach, M.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

LeCun, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

Lee, J. H.

J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. J. Control Autom. Syst. 9, 415–424 (2011).
[Crossref]

Legg, S.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Li, D.-W.

Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
[Crossref]

Li, J.

Li, W.

Lillicrap, T.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Lin, S.

Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
[Crossref]

Lin, S.-C.

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

Lindahl, A. O.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Liu, B.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Liu, J.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Liu, M.

Liu, Z.

Lou, L.

Lu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Lutman, A. A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Maddison, C. J.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Marangos, J. P.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Marinelli, A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Maxwell, T.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

McLachlan, G. J.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Meisen, T.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Micaelli, P.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Mnih, V.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Moerk, J.

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

Mohamed, S.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in 31st International Conference on Machine Learning, Machine Learning Research, E. P. Xing and T. Jebara, eds. (PMLR, 2014), vol. 32, pp. 1278–1286.

Mohanty, S.

S. Mohanty, “Artificial neural network based system identification and model predictive control of a flotation column,” J. Process Control 19, 991–999 (2009).
[Crossref]

Morari, M.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
[Crossref]

Motoda, H.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Motomura, K.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Mourou, G.

Mucke, M.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Murphy, K. P.

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

Nakano, K.

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

Ng, A.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Nham, J.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Nilsson, J.

Nogee, A.

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Norris, T.

O’Grady, C.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Olivier, C.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Osindero, S.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
[Crossref]

Ostrovski, G.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Overton, G.

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Panneershelvam, V.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Peng, H.

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

Petersen, S.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Philip, S. Y.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Piels, M.

D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34, 1442–1452 (2016).
[Crossref]

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

Prett, D. M.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
[Crossref]

Quinlan, J. R.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Radnatarov, D.

Renninger, W. H.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

Rezende, D. J.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in 31st International Conference on Machine Learning, Machine Learning Research, E. P. Xing and T. Jebara, eds. (PMLR, 2014), vol. 32, pp. 1278–1286.

Richardson, D.

Riedmiller, M.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Rosen-zvi, M.

M. Welling, M. Rosen-zvi, and G. E. Hinton, “Exponential family harmoniums with an application to information retrieval,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT, 2005), pp. 1481–1488.

Rubensson, J.-E.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Rusu, A. A.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Sadik, A.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Salakhutdinov, R.

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
[Crossref]

Sanchez-Gonzalez, A.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Såthe, C.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Schaeffer, C.

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

Schäeffer, C. G.

Schrittwieser, J.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Sedghi, H.

H. Sedghi and A. Anandkumar, “Training input-output recurrent neural networks through spectral methods,” arXiv:1603.00954 (2016).

Shen, X.

Sherman, L.

Shlizerman, E.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

Sifre, L.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Silver, D.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Simpson, E. R.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Song, C.

Squibb, R. J.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Steinbach, M.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Steinberg, D.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Stinchcombe, M.

K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
[Crossref]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[Crossref]

Sutskever, I.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 1097–1105.

Teh, Y.-W.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
[Crossref]

Teng, F.-J.

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

Tercan, H.

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).

Tsai, C.-C.

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

Ueda, K.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Vacher, M.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

van den Driessche, G.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Vdovin, G.

Veness, J.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Walke, D. J.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Wang, D.

Wang, H.

M. Krstić and H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica 36, 595–601 (2000).
[Crossref]

Wang, T.-Y.

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

Wang, Z.

Weisberg Andersen, H.

H. Weisberg Andersen and M. Kümmel, “Evaluating estimation of gain directionality,” J. Process Control 2, 67–86 (1992).
[Crossref]

Welling, M.

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).

M. Welling, M. Rosen-zvi, and G. E. Hinton, “Exponential family harmoniums with an application to information retrieval,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT, 2005), pp. 1481–1488.

White, H.

K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
[Crossref]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[Crossref]

Wierstra, D.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in 31st International Conference on Machine Learning, Machine Learning Research, E. P. Xing and T. Jebara, eds. (PMLR, 2014), vol. 32, pp. 1278–1286.

Williams, R. J.

R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational complexity,” in Backpropagation (L. Erlbaum Associates Inc., 1995), pp. 433–486.

Winther, O.

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

Wise, F. W.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

Woodward, R.

R. Woodward and E. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).

Wu, J.

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

Wu, X.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Xi, Y.-G.

Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
[Crossref]

Yan, M.

Yang, Q.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Yu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Zeng, H.

Zhang, M.

Zhaunerchyk, V.

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Zhong, K.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Zhou, Z.-H.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Zibar, D.

D. Zibar, M. Piels, R. Jones, and C. G. Schäeffer, “Machine learning techniques in optical communication,” J. Lightwave Technol. 34, 1442–1452 (2016).
[Crossref]

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

Zipser, D.

R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational complexity,” in Backpropagation (L. Erlbaum Associates Inc., 1995), pp. 433–486.

Acta Autom. Sin. (1)

Y.-G. Xi, D.-W. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Autom. Sin. 39, 222–236 (2013).
[Crossref]

Automatica (3)

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—a survey,” Automatica 25, 335–348 (1989).
[Crossref]

M. Krstić and H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica 36, 595–601 (2000).
[Crossref]

A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive control of combustion plants based on gaussian process models,” Automatica 44, 1621–1631 (2008).
[Crossref]

Control Eng. Pract. (2)

C.-C. Tsai, S.-C. Lin, T.-Y. Wang, and F.-J. Teng, “Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process,” Control Eng. Pract. 17, 302–310 (2009).
[Crossref]

H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano, “Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model,” Control Eng. Pract. 17, 59–66 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photon. Technol. Lett. 28, 1886–1889 (2016).
[Crossref]

Int. J. Control Autom. Syst. (1)

J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. J. Control Autom. Syst. 9, 415–424 (2011).
[Crossref]

Int. J. Opt. (1)

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 1–17 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Extremum-seeking control of a beam pattern of a reconfigurable holographic metamaterial antenna,” J. Opt. Soc. Am. A 33, 59–68 (2016).
[Crossref]

R. C. Jones, “A new calculus for the treatment of optical systems. I. description and discussion of the calculus,” J. Opt. Soc. Am. A 31, 488–493 (1941).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Process Control (2)

S. Mohanty, “Artificial neural network based system identification and model predictive control of a flotation column,” J. Process Control 19, 991–999 (2009).
[Crossref]

H. Weisberg Andersen and M. Kümmel, “Evaluating estimation of gain directionality,” J. Process Control 2, 67–86 (1992).
[Crossref]

Knowl. Inf. Syst. (1)

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14, 1–37 (2008).
[Crossref]

Laser Focus World (1)

G. Overton, A. Nogee, D. Belforte, and C. Holton, “Annual laser market review & forecast: where have all the lasers gone?” Laser Focus World 53, 1–24 (2017).

Math. Control Signals Syst. (1)

G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signals Syst. 2, 303–314 (1989).
[Crossref]

Nat. Commun. (1)

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, and J. P. Marangos, “Accurate prediction of x-ray pulse properties from a free-electron laser using machine learning,” Nat. Commun. 8, 15461 (2017).
[Crossref]

Nature (3)

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature 518, 529–533 (2015).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature 529, 484–489 (2016).
[Crossref]

Neural Comput. (2)

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).
[Crossref]

S. Hochreiter and S. Jürgem, “Long short-term memory,” Neural Comput. 9, 1735–1780 (1997).
[Crossref]

Neural Netw. (2)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[Crossref]

K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 3, 551–560 (1990).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Prod. Eng. (1)

H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, and S. Jeschke, “Improving the laser cutting process design by machine learning techniques,” Prod. Eng. 11, 195–203 (2017).
[Crossref]

Sci. Rep. (1)

R. Woodward and E. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).

Science (1)

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
[Crossref]

SIAM Rev. (1)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006).
[Crossref]

Other (19)

TensorFlow, https://www.tensorflow.org .

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in 31st International Conference on Machine Learning, Machine Learning Research, E. P. Xing and T. Jebara, eds. (PMLR, 2014), vol. 32, pp. 1278–1286.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

H. Sedghi and A. Anandkumar, “Training input-output recurrent neural networks through spectral methods,” arXiv:1603.00954 (2016).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 1097–1105.

D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, eds., Semi-Supervised Learning with Deep Generative Models (2014).

T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum, eds., Deep Convolutional Inverse Graphics Network (2015).

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).

D. P. Kingma and J. Ba, eds., Adam: A Method for Stochastic Optimization (2015).

R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational complexity,” in Backpropagation (L. Erlbaum Associates Inc., 1995), pp. 433–486.

Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary vectors using two layer networks,” in Advances in Neural Information Processing Systems (1992), pp. 912–919.

M. Welling, M. Rosen-zvi, and G. E. Hinton, “Exponential family harmoniums with an application to information retrieval,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT, 2005), pp. 1481–1488.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in 13th International Conference on Artificial Intelligence and Statistics, Machine Learning Research, Y. W. Teh and M. Titterington, eds. (PMLR, 2010), vol. 9, pp. 249–256.

https://github.com/thombau/UW_Seattle_1/ .

D. Zibar, M. Piels, O. Winther, J. Moerk, and C. Schaeffer, “Machine learning methods for nanolaser characterization,” arXiv:1611.03335 (2016).

J. Martens and I. Sutskever, eds., Learning Recurrent Neural Networks with Hessian-Free Optimization (2011).

I. Lenz, R. Knepper, and A. Saxena, eds., DeepMPC: Learning Deep Latent Features for Model Predictive Control (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the self-tuning fiber laser. (a) The laser cavity, the optic components, and the laser’s objective function are discussed in Section  3.A. (b) The Variational Autoencoder is discussed in Section  3.B; (c) the Latent Variable Mapping in Section  3.C; and (d) the Model Prediction in Section  3.D.
Fig. 2.
Fig. 2. Typical stable mode-locking dynamics where a stable pulse is formed from initial noise in the cavity. The objective function of Eq. (1) is aimed at producing temporally short, high-energy pulses. Thus if the kurtosis is small, then the pulse is tightly confined in time since the kurtosis is in the denominator of the objective function.
Fig. 3.
Fig. 3. Schematic of the Deep Learning Controller. The inputs to the controller are sequences of the states of the laser E , M and of the control inputs α . The Model Prediction is a RNN that first predicts the birefringence K t + 1 of time step t + 1 and maps it to good initial control inputs α t + 1 . Second, the system’s states v t + 1 are predicted. This is done recurrently to predict N time steps in the future. Then, the control inputs are updated such that the objective function is optimized. The optimized control inputs α t + Δ t : t + N Δ t are used to regulate the laser system for the next N time steps. Once the difference between the prediction and the true output exceeds a certain threshold, the VAE is used to infer K and, then, K α mapping maps it to the control input α . This inner loop is necessary to stabilize the control system.
Fig. 4.
Fig. 4. Comparison of the true birefringence (blue line) and the samples from the two dimensional VAE’s latent space. While the samples from the first dimension seem to capture just random noise, the samples from the second dimension follow the true birefringence with high accuracy.
Fig. 5.
Fig. 5. Performance of the Deep Learning Control despite significant sinusoidal change in birefringence over time. Without control, the objective function plummets and results in failure of the fiber laser to mode lock. With DL-MPC, the system remains at a high-performance mode-locked state.
Fig. 6.
Fig. 6. Same as Fig. 5 but with random changes in birefringence. The DL-MPC again stabilizes the objective function of the system at a high level.
Fig. 7.
Fig. 7. Fully connected deep neural network to map the latent variable K to good initial control inputs u .

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

O = E / M ,
i u z + D 2 2 u t 2 K u + ( | u | 2 + A | v | 2 ) u + B v 2 u * = i g ( z ) ( 1 + τ 2 t 2 ) u i Γ u ,
i v z + D 2 2 v t 2 + K v + ( A | u | 2 + | v | 2 ) v + B u 2 v * = i g ( z ) ( 1 + τ 2 t 2 ) v i Γ v .
g ( z ) = 2 g 0 1 + 1 E 0 ( | u | 2 + | v | 2 ) d t ,
W λ 4 = ( e i π / 4 0 0 e i π / 4 ) , W λ 2 = ( i 0 0 i ) , W p = ( 1 0 0 0 ) .
J j = R ( α j ) W R ( α j ) ,
p ( x ) = p ( x | z ) p ( z ) d z = p ( x | z ; θ ) p ( z ) p ( z | x ; θ ) ,
K L ( q ( z | x ; ϕ ) | | p ( z | x ; θ ) ) = E L B O ( ϕ , θ ) + log p ( x ) ,
ELBO ( ϕ , θ ) = E q [ log p ( z | x ; θ ) ] E q [ log q ( z | x ; ϕ ) ] .
q * ( z | x ; ϕ ) = argmin KL ( q ( z | x ; ϕ ) | | p ( z | x ; θ ) ) .
ELBO i ( ϕ , θ ) = E q [ log p ( x i | z ; θ ) ] K L ( q ( z | x i ; ϕ ) | | p ( z ) ) .
L = 1 2 u ^ u 2 2 .
arg max u t + 1 : t + N O t + 1 : t + N = arg max u t + 1 : t + N { E M } t + 1 : t + N .
h l , past = relu ( i W l , past i x t 2 b : t b 1 i + b l , past ) ,
h l , current = relu ( i W l , current i x t b : t i + b l , current ) ,
I current = relu ( i W h l i h l , past i h l , current i + k W l l k I past k + b h l ) ,
h current = relu ( i W current i x t b : t i + b current ) ,
h future = relu ( i W future i u t b + 1 : t + 1 + b future ) ,
h latent = relu ( i W l i I current i + b latent ) ,
K t + 1 = i W K o i h latent i + b K o .
v t + 1 = i W o i h latent i h current i h future i + b o .

Metrics