Abstract

In this paper, we propose a liquid core-cladding photonic crystal fiber (PCF), which is engineered with different available organic optofluidics, to generate supercontinuum in the visible and near-infrared regimes by using the symmetrized split-step Fourier method. Simulations reveal that in response to launching 50 fs input pulses of 10 kW peak power, centered about λ0=1032 and 1560 nm, into a 10 mm long liquid core-cladding PCF, maximum 2 μm supercontinua from 500 to 2500 nm can be achieved. Our numerical study is important for the new field of visible and near-IR supercontinuum generation in liquid-core optical fibers.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Rasoul Raei, Majid Ebnali-Heidari, and Hamed Saghaei, "Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions: publisher’s note," J. Opt. Soc. Am. B 35, 1545-1545 (2018)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-35-7-1545

31 May 2018: A correction was made to the author listing and author affiliations.


OSA Recommended Articles
Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

Mid-IR multipeak and stepwise blueshifted dispersive wave generation in liquid-filled chalcogenide capillary optical fibers

Satya P. Singh, V. Mishra, and Shailendra K. Varshney
J. Opt. Soc. Am. B 33(11) D65-D71 (2016)

Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy

Mbaye Diouf, Amine Ben Salem, Rim Cherif, Hamed Saghaei, and Ahmadou Wague
Appl. Opt. 56(2) 163-169 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” J. Opt. Soc. Am. B 20, 1887–1893 (2003).
    [Crossref]
  2. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [Crossref]
  3. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5  μmin ZBLAN fiber with high average power generation beyond 3.8  μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [Crossref]
  4. F. Omenetto, N. Wolchover, M. Wehner, M. Ross, A. Efimov, A. Taylor, V. R. K. Kumar, A. George, J. Knight, and N. Joly, “Spectrally smooth supercontinuum from 350  nm to 3  μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006).
    [Crossref]
  5. A. Fedotov, E. Serebryannikov, A. Ivanov, and A. Zheltikov, “Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber,” Appl. Opt. 45, 6823–6830 (2006).
    [Crossref]
  6. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  7. P. Ho and R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [Crossref]
  8. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).
  9. M. Vieweg, T. Gissibl, S. Pricking, B. Kuhlmey, D. Wu, B. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
    [Crossref]
  10. R. Zhang and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
    [Crossref]
  11. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
    [Crossref]
  12. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
    [Crossref]
  13. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
    [Crossref]
  14. L. Xiao, N. V. Wheeler, N. Healy, and A. C. Peacock, “Integrated hollow-core fibers for nonlinear optofluidic applications,” Opt. Express 21, 28751–28757 (2013).
    [Crossref]
  15. G. Fanjoux, S. Margueron, J.-C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman-Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34, 1677–1683 (2017).
    [Crossref]
  16. G. J. Raj, R. V. J. Raja, N. Nagarajan, and G. Ramanathan, “Tunable broadband spectrum under the influence of temperature in IR region using CS2 core photonic crystal fiber,” J. Lightwave Technol. 34, 3503–3509 (2016).
    [Crossref]
  17. M. Vieweg, S. Pricking, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37, 1058–1060 (2012).
    [Crossref]
  18. C. J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd ed. (Aldrich Chemical Co., 1981).
  19. M. C. P. Huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, “Characterization of self-phase modulation in liquid filled hollow core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 1886–1893 (2010).
    [Crossref]
  20. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
    [Crossref]
  21. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
  22. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8  GHz,” Opt. Express 20, 4248–4253 (2012).
    [Crossref]
  23. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2, 1588–1611 (2012).
    [Crossref]
  24. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.
  25. S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
    [Crossref]
  26. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [Crossref]
  27. J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
    [Crossref]
  28. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  29. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]

2017 (1)

2016 (1)

2015 (1)

2014 (1)

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

2013 (2)

2012 (5)

2011 (1)

2010 (3)

2006 (4)

2003 (2)

K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” J. Opt. Soc. Am. B 20, 1887–1893 (2003).
[Crossref]

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

2002 (1)

2000 (1)

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

1979 (1)

P. Ho and R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.

Alexander, V. V.

Alfano, R.

P. Ho and R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Baron, A.

Bethge, J.

Beugnot, J.-C.

Brambilla, G.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Chan, A.

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Choi, D.-Y.

Coen, S.

Colthup, N. B.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Delaye, P.

Dudley, J. M.

Efimov, A.

Eggleton, B.

Eggleton, B. J.

Erbert, G.

Fanjoux, G.

Fateley, W. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Fedotov, A.

Feng, X.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Fiebig, C.

Freeman, M. J.

Frey, R.

Gai, X.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A.

Giessen, H.

Gissibl, T.

Grasselli, J. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).

Griebner, U.

Grossard, N.

Healy, N.

Hegenbarth, R.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

Heidt, A. M.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Herrmann, J.

Hilligsøe, K. M.

Ho, P.

P. Ho and R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Horak, P.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Husakou, A.

Huy, M. C. P.

Islam, M. N.

Ivanov, A.

Joly, N.

Kartashov, Y. V.

Kedenburg, S.

Keiding, S. R.

Keller, U.

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

Kieu, K.

Klenner, A.

Knight, J.

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Kuhlmey, B.

Kulkarni, O. P.

Kumar, M.

Kumar, V. R. K.

Larsen, J. J.

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Lebrun, S.

Lin-Vien, D.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Maillotte, H.

Margueron, S.

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Mitschke, F.

Nagarajan, N.

Neelakandan, M.

Noack, F.

Norwood, R. A.

Omenetto, F.

Paschke, K.

Paulsen, H. N.

Peacock, A. C.

Pekarek, S.

Petropoulos, P.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Petrovich, M.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Peyghambarian, N.

Poletti, F.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Ponzo, G.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Pouchert, C. J.

C. J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd ed. (Aldrich Chemical Co., 1981).

Price, J. H.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Pricking, S.

Provino, L.

Raj, G. J.

Raja, R. V. J.

Ramanathan, G.

Ranka, J. K.

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Ross, M.

Schneebeli, L.

Serebryannikov, E.

Shi, J.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Steinle, T.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

Steinmann, A.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

Steinmeyer, G.

Stentz, A. J.

Südmeyer, T.

Sylvestre, T.

Taylor, A.

Terry, F. L.

Thøgersen, J.

Torner, L.

Vieweg, M.

Wang, R.

Wang, T.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

Wehner, M.

Wheeler, N. V.

Windeler, R. S.

Wolchover, N.

Wu, D.

Xiao, L.

Yang, Z.

Yu, Y.

Zhang, R.

Zheltikov, A.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117, 803–816 (2014).
[Crossref]

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (5)

Opt. Express (8)

F. Omenetto, N. Wolchover, M. Wehner, M. Ross, A. Efimov, A. Taylor, V. R. K. Kumar, A. George, J. Knight, and N. Joly, “Spectrally smooth supercontinuum from 350  nm to 3  μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. Kuhlmey, D. Wu, B. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref]

R. Zhang and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006).
[Crossref]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
[Crossref]

L. Xiao, N. V. Wheeler, N. Healy, and A. C. Peacock, “Integrated hollow-core fibers for nonlinear optofluidic applications,” Opt. Express 21, 28751–28757 (2013).
[Crossref]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8  GHz,” Opt. Express 20, 4248–4253 (2012).
[Crossref]

Opt. Fiber Technol. (1)

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, and J. Shi, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. A (1)

P. Ho and R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (4)

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Elsevier, 1991).

C. J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd ed. (Aldrich Chemical Co., 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cross-sectional and (b) perspective view of liquid-liquid core-cladding PCF infiltrated with organic optofluidics.
Fig. 2.
Fig. 2. Comparison of the (a) real part and (b) imaginary part of the used material refractive indices, (c) dispersion profiles, and (d) confinement loss of the uninfiltrated clad with those infiltrated with optical fluids of various indices.
Fig. 3.
Fig. 3. Effective area versus wavelength for uninfiltrated and infiltrated clad by various optofluidics.
Fig. 4.
Fig. 4. Transmittance versus wavelength for 10 mm thickness in 20°C.
Fig. 5.
Fig. 5. Spectral distribution along the liquid-liquid core-clad PCF for uninfiltrated clad (row 1) and infiltrated by C 2 H 5 OH (row 2), CCl 4 (row 3), CHCl 3 (row 4), and H 2 O (row 5) pumped by 50 fs laser at 1032 nm (column 1) and 1560 nm (column 2).
Fig. 6.
Fig. 6. First-order degree of coherence for (a) 1032 nm and (b) 1560 nm for uninfiltrated and infiltrated with mentioned optofluidics.

Tables (6)

Tables Icon

Table 1. Sellmeier Coefficients of Liquids Used in This Paper

Tables Icon

Table 2. Values of the Dispersion Orders of Proposed PCF Infiltrated by Various Organic Optofluidics at 1032 and 1560  nm Pump Wavelength

Tables Icon

Table 3. Nonlinear Refractive Indices at the Two Pump Wavelengths of 1032  nm and 1560  nm

Tables Icon

Table 4. γ and A eff in 1032 and 1560  nm for Uninfiltrated and Infiltrated Clad by Various Optofluidics

Tables Icon

Table 5. Fractional Contributions at the Two Pump Wavelengths of 1032 and 1560  nm for C 7 H 8

Tables Icon

Table 6. Coefficients of the Reorientational Response Function of C 7 H 8

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = { 1 + B i λ 2 ( λ 2 C i ) 1 } 0.5 ,
D ( λ ) = λ c d 2 d λ 2 Re [ n eff ( λ ) ] = 2 π c λ 2 β 2 ,
β m = d m β d ω m | ω = ω 0 .
γ ( W · m ) 1 = 2 π n 2 I / λ 0 A eff ( λ ) ,
n 2 I = ϕ NL , max λ A eff T FWHM f rep / 1.76 π P avg L .
A eff = ( + | F ( x , y ) | 2 d x d y ) 2 + | F ( x , y ) | 4 d x d y ,
A z + α 2 A + n = 1 8 i ( n 1 ) β n n ! n A t n = i ( γ ( ω 0 ) + i γ 1 t ) × A ( z , t ) t R ( t ) | A ( z , t t ) | 2 d t ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = A 1 e ( t / t diff ) ( 1 e ( t / t rise , 1 ) ) + A 2 e ( t / t int ) ( 1 e ( t / t rise , 1 ) ) + A 3 e ( t 2 / 2 t fast 2 ) sin ( t / t rise , 2 ) ,
A ( z = 0 , t ) = P 0 sech ( t T 0 ) = ( N T 0 ) ( | β 2 | γ ) 0.5 sech ( t T 0 ) .
| g 12 ( 1 ) ( λ , t 1 t 2 = 0 ) | = | E 1 * ( λ , t 1 ) E 2 ( λ , t 2 ) | | E ( λ , t 1 ) | 2 | E ( λ , t 1 ) | 2 ,

Metrics