Abstract

Metamaterials (MMs) are artificial media tailoring the propagation of light by a design of a unit cell (meta-atom, MA). There is the evident inclination in favor of numerical methods in the description of the optical properties of MMs at the expense of physical intuition. It is shown that complementary to the numerical ones, qualitative models can provide a deeper understanding of the basic physical processes. The phenomenological approach to the homogenization resulted in three possible representations of Maxwell equations: Casimir, Landau–Lifshitz, and new toroidal ones. The multipole approach has been formulated and extended to the case of coupling between MAs, including random MA positioning. It has been shown that the quadrupole moment inherently introduces nonlinear (second-order) material response. The multipole approach has been applied for the case of the quantum MM to the coupled carbon nanotubes, and for the case of MAs to regular and stochastic properties of the nanolaser (spaser), and monochromatic plane wave propagation in the MM consisting of nanolasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tünnermann, F. Lederer, and T. Pertsch
Opt. Express 18(14) 14454-14466 (2010)

Optical properties of metamaterials based on asymmetric double-wire structures

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Hübner, A. Tünnermann, and T. Pertsch
Opt. Express 19(7) 6269-6283 (2011)

Design of plasmonic toroidal metamaterials at optical frequencies

Yao-Wei Huang, Wei Ting Chen, Pin Chieh Wu, Vassili Fedotov, Vassili Savinov, You Zhe Ho, Yuan-Fong Chau, Nikolay I. Zheludev, and Din Ping Tsai
Opt. Express 20(2) 1760-1768 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. H. Lamb, “Negative phase velocity and its consequence in hydrodynamics: On group velocity,” Proc. London Math. Soc. s2-1, 473–479 (1904).
    [Crossref]
  3. A. Schuster, Negative Phase Velocity and Its Consequence in Optics: An Introduction to the Theory of Optics (Edward Arnold, 1904).
  4. L. Mandelshtam, Optical Properties of the Left-Handed Media: the 4th Lecture of L. I. Mandelshtam Given at Moscow State University (05/05/1944) (Nauka, 1994), Vol. 5, p. 461.
  5. N. A. Khizhnyak, “Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods,” Sov. Phys. Tech. Phys. 29, 604–614 (1959).
  6. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  7. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
    [Crossref]
  8. V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  9. U. Chettiar, A. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, and V. Shalaev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 32, 1671 (2007).
    [Crossref]
  10. G. Dolling, M. Wegener, and C. Soukoulis, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55(2007).
    [Crossref]
  11. J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [Crossref]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref]
  13. A. Alu and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901 (2009).
    [Crossref]
  14. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
  15. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
    [Crossref]
  16. B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  17. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref]
  18. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
    [Crossref]
  19. S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
    [Crossref]
  20. D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009).
  21. N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [Crossref]
  22. M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
    [Crossref]
  23. C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
    [Crossref]
  24. C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603 (2009).
    [Crossref]
  25. M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 3419–21 (2009).
    [Crossref]
  26. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
    [Crossref]
  27. L. Arnaut, “Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media,” J. Electromagn. Waves Appl. 11, 1459–1482 (1997).
    [Crossref]
  28. J. Reyes and A. Lakhtakia, “Electrically controlled reflection and transmission of obliquely incident light by structurally chiral materials,” Opt. Commun. 266, 565–573 (2006).
    [Crossref]
  29. S. Prosvirnin and N. Zheludev, “Analysis of polarization transformations by a planar chiral array of complex-shaped particles,” J. Opt. A 11, 074002 (2009).
    [Crossref]
  30. S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
    [Crossref]
  31. V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref]
  32. S. Zhukovsky, A. Novitsky, and V. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988–1990 (2009).
    [Crossref]
  33. J. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref]
  34. S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
    [Crossref]
  35. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
  36. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref]
  37. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [Crossref]
  38. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005).
  39. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  40. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).
    [Crossref]
  41. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  42. C. Hafner, The Generalized Multipole Technique for Computational, Electromagnetics (Artech House, 1990).
  43. V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
    [Crossref]
  44. A. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003).
    [Crossref]
  45. A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
    [Crossref]
  46. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
    [Crossref]
  47. L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
    [Crossref]
  48. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
    [Crossref]
  49. N. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [Crossref]
  50. N. Zheludev, “A roadmap for metamaterials,” Opt. Photon. News 3122(3), 30–35(2011).
    [Crossref]
  51. M. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref]
  52. C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  53. N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
    [Crossref]
  54. M. Stockman, “Spaser explained,” Nat. Photonics 2, 327–329 (2008).
    [Crossref]
  55. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
    [Crossref]
  56. V. Agranovich and V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Nauka, 1965) [Crystal Optics with Spatial Dispersion, and Excitons, Translated into English (Springer-Verlag, 1984)].
  57. V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability,” Metamaterials 3, 1–9 (2009).
    [Crossref]
  58. V. Agranovich and Y. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
    [Crossref]
  59. L. D. Landau and E. L. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1960), Chap. IX.
  60. K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory, Springer Tracts in Modern Physics (Springer, 2010), Vol. 237.
  61. A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
    [Crossref]
  62. C. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
    [Crossref]
  63. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  64. A. Vinogradov, Electrodynamics of Compound Media (Scientific and educational literature publisher, 2001) (in Russian).
  65. P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica 19, 971–986 (1953).
    [Crossref]
  66. P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
    [Crossref]
  67. I. B. Zeldovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).
  68. N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
    [Crossref]
  69. A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
    [Crossref]
  70. V. Dubovik and S. Shabanov, “Essays on the formal aspects of electromagnetic theory,” in The Gauge Invariance, Toroid Order Parameters and Radiation in Electromagnetic Theory, A. Lakhakia, ed. (World Scientific, 1993), Vol. 399.
  71. A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
    [Crossref]
  72. G. Rusakoff, “A derivation of the macroscopic Maxwell equations,” Am. J. Phys. 38, 1188–1195 (1970).
    [Crossref]
  73. A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787–2810 (1973).
    [Crossref]
  74. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  75. S. Maslovski, “Electrodynamics of composite materials with significant spatial dispersion,” Ph.D. thesis (ITMO, 2004).
  76. A. Vinogradov and A. Aivazyan, “Scaling theory of homogenization of the Maxwell equations,” Phys. Rev. E 60, 987–993 (1999).
    [Crossref]
  77. C. Simovski, Weak Spatial Dispersion in Composite Media (Polytechnika, 2003) [in Russian].
  78. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
    [Crossref]
  79. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
    [Crossref]
  80. L. Mandelshtam, “Full collection of publications,” Publ. Acad. Sci. USSR 1, 162–179 (1957) [in Russian].
  81. A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
    [Crossref]
  82. R. Raab and O. De Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).
  83. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  84. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
    [Crossref]
  85. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
    [Crossref]
  86. E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
    [Crossref]
  87. M. Wegener, Extreme Nonlinear Optics (Springer, 2005).
  88. G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
    [Crossref]
  89. T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
    [Crossref]
  90. C. Kittel, Introduction to Solid State Physics (Wiley, 1986).
  91. B. Lee, H. Kim, and J. Park, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).
  92. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  93. V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
    [Crossref]
  94. L. Onsager, “Reciprocal Relations in irreversible processes,” Phys. Rev. 37, 405–426 (1931).
    [Crossref]
  95. H. Casimir, “On Onsager’s principle of microscopic reversibility,” Rev. Mod. Phys. 17, 343–350 (1945).
    [Crossref]
  96. S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
    [Crossref]
  97. J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
    [Crossref]
  98. B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
    [Crossref]
  99. B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
    [Crossref]
  100. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
    [Crossref]
  101. H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
    [Crossref]
  102. E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref]
  103. K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [Crossref]
  104. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  105. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  106. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  107. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
    [Crossref]
  108. M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  109. S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  110. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  111. V. Dubovik and V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187, 145–202 (1990).
    [Crossref]
  112. G. Afanasiev, “Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34, 539–559 (2001).
    [Crossref]
  113. G. Afanasiev, “Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering,” J. Phys. A 27, 2143–2160 (1994).
    [Crossref]
  114. G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary time-dependent toroidal sources,” J. Phys. A 28, 4565–4580 (1995).
    [Crossref]
  115. V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).
  116. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
    [Crossref]
  117. K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
    [Crossref]
  118. V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
    [Crossref]
  119. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
    [Crossref]
  120. A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
    [Crossref]
  121. V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
    [Crossref]
  122. D. Singleton, “Electromagnetism with magnetic charge and two photons,” Am. J. Phys. 64, 452–458, 1996.
    [Crossref]
  123. C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
    [Crossref]
  124. W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
    [Crossref]
  125. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  126. N. Gippius, T. Weiss, S. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010).
    [Crossref]
  127. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18, 6545 (2010).
    [Crossref]
  128. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
    [Crossref]
  129. J. Rico-García, J. López-Alonso, and A. Aradian, “Toy model to describe the effect of positional blocklike disorder in metamaterials composites,” J. Opt. Soc. Am. B 29, 53–67 (2012).
    [Crossref]
  130. S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
    [Crossref]
  131. A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys. 12, 013015 (2010).
    [Crossref]
  132. A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
    [Crossref]
  133. C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009).
    [Crossref]
  134. E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
    [Crossref]
  135. A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
    [Crossref]
  136. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
    [Crossref]
  137. A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Metamaterials with interacting metaatoms,” arXiv:1205.6839 (2012), http://arxiv.org/abs/1205.6839 .
  138. J. Pendry, “Light finds a way through maze,” Physics 1, 20 (2008).
    [Crossref]
  139. P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [Crossref]
  140. J. Pendry, “Quasi-extended electron states in strongly disordered systems,” J. Phys. C 20, 733–742 (1987).
    [Crossref]
  141. A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).
  142. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
    [Crossref]
  143. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
    [Crossref]
  144. F. Rüting, “Plasmons in disordered nanoparticle chains: localization and transport,” arXiv:1102.2705v1 (2011).
  145. D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
    [Crossref]
  146. W. Tan, Y. Sun, Z.-G. Wang, H. Chen, and H.-Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Opt. Express 17, 24371–24376 (2009).
    [Crossref]
  147. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
    [Crossref]
  148. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
    [Crossref]
  149. X. Zhou, X. Zhao, and Y. Liu, “Disorder effects of left-handed metamaterials with unitary dendritic structure cell,” Opt. Express 16, 7674–7679 (2008).
    [Crossref]
  150. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advanced and outlook,” Metamaterials 2, 1–17(2008).
  151. J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
    [Crossref]
  152. P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
    [Crossref]
  153. R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
    [Crossref]
  154. C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
    [Crossref]
  155. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  156. N. Sharma, “Nondipole optical scattering from liquids and nanoparticles,” Phys. Rev. Lett. 98, 217402 (2007).
    [Crossref]
  157. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
    [Crossref]
  158. Y. Shin, A. Chavez-Pirson, and Y. Lee, “Multipole analysis of the radiation from near-field optical probes,” Opt. Lett. 25, 171–173 (2000).
    [Crossref]
  159. D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).
  160. V. Pustovit, J. Sotelo, and G. Niklasson, “Coupled multipolar interactions in small-particle metallic clusters,” J. Opt. Soc. Am. A 19, 513–518 (2002).
    [Crossref]
  161. N. Blombergen and R. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
    [Crossref]
  162. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
    [Crossref]
  163. D. Bethune, “Quadrupole second-harmonic generation for a focused beam of arbitrary transverse structure and polarization,” Opt. Lett. 6, 287–289 (1981).
    [Crossref]
  164. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
    [Crossref]
  165. J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
    [Crossref]
  166. E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
    [Crossref]
  167. A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
    [Crossref]
  168. I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
    [Crossref]
  169. I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
    [Crossref]
  170. A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
    [Crossref]
  171. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
    [Crossref]
  172. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
    [Crossref]
  173. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975–1977 (2008).
    [Crossref]
  174. Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
    [Crossref]
  175. J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
    [Crossref]
  176. A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
    [Crossref]
  177. M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [Crossref]
  178. R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  179. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
    [Crossref]
  180. A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
    [Crossref]
  181. A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
    [Crossref]
  182. V. M. Fain, “Quantum radio physics, v. 1: Photons and nonlinear media,” Sovetskoe Radio (1972) [in Russian].
  183. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [Crossref]
  184. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
    [Crossref]
  185. A. S. Chirkin and A. V. Chipouline, “Generalized expression for the natural width of the radiation spectrum of quantum oscillators,” JETP Lett. 93, 114–118 (2011).
    [Crossref]
  186. N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
    [Crossref]
  187. A. Chipouline and V. Fedotov, “Towards quantum magnetic metamaterials,” in Proceedings Nanometa (2011), paper THU4s.3.
  188. Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
    [Crossref]
  189. S. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [Crossref]
  190. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  191. H. Raether, Surface Plasmons (Springer, 1988).
  192. C. Soukoulis and M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 1633–1634 (2010).
    [Crossref]
  193. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref]
  194. S. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
    [Crossref]
  195. H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
    [Crossref]
  196. P. Berini and D. Leon, “I. Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
    [Crossref]
  197. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [Crossref]
  198. S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
    [Crossref]
  199. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [Crossref]
  200. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
    [Crossref]
  201. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref]
  202. E. M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
    [Crossref]
  203. M. Strandberg, “Inherent noise of quantum-mechanical amplifiers,” Phys. Rev. 106, 617–620 (1957).
    [Crossref]
  204. F. Bunkin and A. Oraevsky, Izv. Vuzov, Radiophysika 2, 181 (1959).
  205. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
    [Crossref]
  206. M. Stockman, “The spaser as a nanoscale quantum generator and amplifier,” J. Opt. 12, 024004 (2010).
    [Crossref]
  207. M. Stockman, “Spaser action, loss-compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett 106, 156802 (2011).
    [Crossref]
  208. N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [Crossref]
  209. M. Hill, M. Marell, E. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
    [Crossref]
  210. Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
    [Crossref]
  211. A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
    [Crossref]
  212. M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
    [Crossref]
  213. R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
    [Crossref]
  214. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5  μm,” Opt. Express 19, 8954–8961 (2011).
    [Crossref]
  215. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
    [Crossref]
  216. Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
    [Crossref]
  217. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
    [Crossref]
  218. S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
    [Crossref]
  219. A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
    [Crossref]
  220. E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express 19, 24849–24857 (2011).
    [Crossref]
  221. G. Haken, Laser Light Dynamics (North Holland, 1985).
  222. S. Akhmanov, Y. D’yakov, and A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, 1981) [in Russian].
  223. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).
  224. V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).
  225. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
    [Crossref]
  226. V. S. Troitskii, Zh. Eksp. Teor. Fiz. 34, 390 (1958) [Sov. Phys. JETP 7, 271 (1958)]; Radiotekhn. Elektron. 3, 1298, 1958.
  227. A. Schawlow and C. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [Crossref]
  228. J. Singer, Masers (Wiley, 1959).
  229. A. Malakhov, Fluctuations in Self Oscillatory Systems (Nauka, 1968) [in Russian].
  230. F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].
  231. M. Lax, Statistical Physics, Phase Transitions and Superfluidity, M. Chrétien, E. P. Gross, and S. Deser, eds. (Gordon and Breach, 1968), p. 271.
  232. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975).
  233. S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
    [Crossref]
  234. A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
    [Crossref]
  235. M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
    [Crossref]
  236. P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
    [Crossref]
  237. O. Hess and K. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013).
    [Crossref]
  238. S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
    [Crossref]
  239. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
  240. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 6, 16–24 (2012).
  241. I. Radko, M. Nielsen, O. Albrektsen, and S. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010).
    [Crossref]
  242. A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
    [Crossref]
  243. L. Cao and M. Brongersma, “Active photonics: Ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
    [Crossref]
  244. M. Wegener, J. García-Pomar, C. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
    [Crossref]
  245. A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
    [Crossref]
  246. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
    [Crossref]
  247. E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
    [Crossref]
  248. A. Chipouline, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for MM with quantum ingredients,” arXiv 1104.0110 (2011).
  249. A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
    [Crossref]

2016 (1)

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

2015 (2)

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

2014 (2)

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

2013 (2)

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

O. Hess and K. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013).
[Crossref]

2012 (14)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 6, 16–24 (2012).

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

J. Rico-García, J. López-Alonso, and A. Aradian, “Toy model to describe the effect of positional blocklike disorder in metamaterials composites,” J. Opt. Soc. Am. B 29, 53–67 (2012).
[Crossref]

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
[Crossref]

2011 (20)

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

M. Stockman, “Spaser action, loss-compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett 106, 156802 (2011).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

S. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

P. Berini and D. Leon, “I. Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

N. Zheludev, “A roadmap for metamaterials,” Opt. Photon. News 3122(3), 30–35(2011).
[Crossref]

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5  μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]

M. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express 19, 24849–24857 (2011).
[Crossref]

A. S. Chirkin and A. V. Chipouline, “Generalized expression for the natural width of the radiation spectrum of quantum oscillators,” JETP Lett. 93, 114–118 (2011).
[Crossref]

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

2010 (22)

S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
[Crossref]

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
[Crossref]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18, 6545 (2010).
[Crossref]

N. Gippius, T. Weiss, S. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

I. Radko, M. Nielsen, O. Albrektsen, and S. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010).
[Crossref]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref]

N. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref]

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys. 12, 013015 (2010).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

C. Soukoulis and M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref]

M. Stockman, “The spaser as a nanoscale quantum generator and amplifier,” J. Opt. 12, 024004 (2010).
[Crossref]

D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

2009 (32)

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability,” Metamaterials 3, 1–9 (2009).
[Crossref]

S. Prosvirnin and N. Zheludev, “Analysis of polarization transformations by a planar chiral array of complex-shaped particles,” J. Opt. A 11, 074002 (2009).
[Crossref]

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

A. Alu and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[Crossref]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[Crossref]

S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
[Crossref]

D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009).

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009).
[Crossref]

M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 3419–21 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603 (2009).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

M. Hill, M. Marell, E. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[Crossref]

S. Zhukovsky, A. Novitsky, and V. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988–1990 (2009).
[Crossref]

W. Tan, Y. Sun, Z.-G. Wang, H. Chen, and H.-Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Opt. Express 17, 24371–24376 (2009).
[Crossref]

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
[Crossref]

Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

L. Cao and M. Brongersma, “Active photonics: Ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[Crossref]

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

2008 (20)

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

X. Zhou, X. Zhao, and Y. Liu, “Disorder effects of left-handed metamaterials with unitary dendritic structure cell,” Opt. Express 16, 7674–7679 (2008).
[Crossref]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[Crossref]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975–1977 (2008).
[Crossref]

M. Wegener, J. García-Pomar, C. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advanced and outlook,” Metamaterials 2, 1–17(2008).

J. Pendry, “Light finds a way through maze,” Physics 1, 20 (2008).
[Crossref]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

M. Stockman, “Spaser explained,” Nat. Photonics 2, 327–329 (2008).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

2007 (11)

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

N. Sharma, “Nondipole optical scattering from liquids and nanoparticles,” Phys. Rev. Lett. 98, 217402 (2007).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

G. Dolling, M. Wegener, and C. Soukoulis, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55(2007).
[Crossref]

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
[Crossref]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

U. Chettiar, A. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, and V. Shalaev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 32, 1671 (2007).
[Crossref]

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[Crossref]

2006 (14)

S. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

V. Agranovich and Y. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

J. Reyes and A. Lakhtakia, “Electrically controlled reflection and transmission of obliquely incident light by structurally chiral materials,” Opt. Commun. 266, 565–573 (2006).
[Crossref]

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref]

2005 (11)

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
[Crossref]

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

2004 (4)

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

J. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref]

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
[Crossref]

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

2003 (9)

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[Crossref]

R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[Crossref]

A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[Crossref]

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

A. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003).
[Crossref]

C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).
[Crossref]

2002 (4)

V. Pustovit, J. Sotelo, and G. Niklasson, “Coupled multipolar interactions in small-particle metallic clusters,” J. Opt. Soc. Am. A 19, 513–518 (2002).
[Crossref]

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[Crossref]

S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
[Crossref]

2001 (3)

G. Afanasiev, “Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34, 539–559 (2001).
[Crossref]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[Crossref]

R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

2000 (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
[Crossref]

Y. Shin, A. Chavez-Pirson, and Y. Lee, “Multipole analysis of the radiation from near-field optical probes,” Opt. Lett. 25, 171–173 (2000).
[Crossref]

1999 (3)

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

A. Vinogradov and A. Aivazyan, “Scaling theory of homogenization of the Maxwell equations,” Phys. Rev. E 60, 987–993 (1999).
[Crossref]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

1997 (3)

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

L. Arnaut, “Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media,” J. Electromagn. Waves Appl. 11, 1459–1482 (1997).
[Crossref]

1996 (3)

D. Singleton, “Electromagnetism with magnetic charge and two photons,” Am. J. Phys. 64, 452–458, 1996.
[Crossref]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[Crossref]

A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
[Crossref]

1995 (2)

M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[Crossref]

G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary time-dependent toroidal sources,” J. Phys. A 28, 4565–4580 (1995).
[Crossref]

1994 (3)

G. Afanasiev, “Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering,” J. Phys. A 27, 2143–2160 (1994).
[Crossref]

S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[Crossref]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[Crossref]

1991 (1)

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

1990 (1)

V. Dubovik and V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187, 145–202 (1990).
[Crossref]

1987 (2)

J. Pendry, “Quasi-extended electron states in strongly disordered systems,” J. Phys. C 20, 733–742 (1987).
[Crossref]

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

1986 (1)

V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).

1985 (1)

N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
[Crossref]

1981 (2)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

D. Bethune, “Quadrupole second-harmonic generation for a focused beam of arbitrary transverse structure and polarization,” Opt. Lett. 6, 287–289 (1981).
[Crossref]

1973 (1)

A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787–2810 (1973).
[Crossref]

1970 (1)

G. Rusakoff, “A derivation of the macroscopic Maxwell equations,” Am. J. Phys. 38, 1188–1195 (1970).
[Crossref]

1968 (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

1959 (2)

F. Bunkin and A. Oraevsky, Izv. Vuzov, Radiophysika 2, 181 (1959).

N. A. Khizhnyak, “Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods,” Sov. Phys. Tech. Phys. 29, 604–614 (1959).

1958 (3)

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

V. S. Troitskii, Zh. Eksp. Teor. Fiz. 34, 390 (1958) [Sov. Phys. JETP 7, 271 (1958)]; Radiotekhn. Elektron. 3, 1298, 1958.

A. Schawlow and C. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

1957 (3)

M. Strandberg, “Inherent noise of quantum-mechanical amplifiers,” Phys. Rev. 106, 617–620 (1957).
[Crossref]

I. B. Zeldovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

L. Mandelshtam, “Full collection of publications,” Publ. Acad. Sci. USSR 1, 162–179 (1957) [in Russian].

1954 (1)

N. Blombergen and R. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[Crossref]

1953 (1)

P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica 19, 971–986 (1953).
[Crossref]

1946 (1)

E. M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

1945 (1)

H. Casimir, “On Onsager’s principle of microscopic reversibility,” Rev. Mod. Phys. 17, 343–350 (1945).
[Crossref]

1931 (1)

L. Onsager, “Reciprocal Relations in irreversible processes,” Phys. Rev. 37, 405–426 (1931).
[Crossref]

1904 (1)

H. Lamb, “Negative phase velocity and its consequence in hydrodynamics: On group velocity,” Proc. London Math. Soc. s2-1, 473–479 (1904).
[Crossref]

Afanasiev, G.

G. Afanasiev, “Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34, 539–559 (2001).
[Crossref]

G. Afanasiev, “Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering,” J. Phys. A 27, 2143–2160 (1994).
[Crossref]

Afanasiev, G. N.

G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary time-dependent toroidal sources,” J. Phys. A 28, 4565–4580 (1995).
[Crossref]

Agranovich, V.

V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability,” Metamaterials 3, 1–9 (2009).
[Crossref]

V. Agranovich and Y. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

V. Agranovich and V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Nauka, 1965) [Crystal Optics with Spatial Dispersion, and Excitons, Translated into English (Springer-Verlag, 1984)].

Ahn, H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Aivazyan, A.

A. Vinogradov and A. Aivazyan, “Scaling theory of homogenization of the Maxwell equations,” Phys. Rev. E 60, 987–993 (1999).
[Crossref]

Akhmanov, S.

S. Akhmanov, Y. D’yakov, and A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, 1981) [in Russian].

Albrektsen, O.

Alu, A.

A. Alu and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys. 12, 013015 (2010).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Amin, M. H. S.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Anderson, P.

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

Andrianov, E.

Andryieuski, A.

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

Angelis, F.

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

Anlage, S.

S. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Aradian, A.

Arecchi, F.

F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].

Arnaut, L.

L. Arnaut, “Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media,” J. Electromagn. Waves Appl. 11, 1459–1482 (1997).
[Crossref]

Ashburn, P.

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[Crossref]

Aussenegg, F.

Azad, A. K.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Bachelier, G.

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

Bakker, R.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Banerjee, A.

A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
[Crossref]

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

Bartal, G.

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Beermann, J.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Belgrave, A.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Benichou, E.

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 6, 16–24 (2012).

P. Berini and D. Leon, “I. Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

Bertolotti, J.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

Bethune, D.

Bliokh, K. Y.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Blombergen, N.

N. Blombergen and R. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[Crossref]

Boardman, A. D.

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

Boden, S.

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

Bolger, P.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

Boller, K.

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advanced and outlook,” Metamaterials 2, 1–17(2008).

Bondarenko, O.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Bozhevolnyi, S.

Bozhevolnyi, S. I.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Brevet, P.-F.

Brongersma, M.

L. Cao and M. Brongersma, “Active photonics: Ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[Crossref]

Bunkin, F.

F. Bunkin and A. Oraevsky, Izv. Vuzov, Radiophysika 2, 181 (1959).

Busch, K.

Bussmann, K.

Cai, W.

Canfield, B.

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

Canfield, B. K.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

Cao, J.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Cao, L.

L. Cao and M. Brongersma, “Active photonics: Ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[Crossref]

Casimir, H.

H. Casimir, “On Onsager’s principle of microscopic reversibility,” Rev. Mod. Phys. 17, 343–350 (1945).
[Crossref]

Cavalcanti, S.

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

Chan, C. T.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Chavez-Pirson, A.

Chen, H.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

W. Tan, Y. Sun, Z.-G. Wang, H. Chen, and H.-Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Opt. Express 17, 24371–24376 (2009).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

Chen, H. S.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Chen, H.-T.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

Chen, K. S.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Chen, Y.

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Cheng, L.

Cheng, W.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Chettiar, U.

Chichkov, B.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

Chipouline, A.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
[Crossref]

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

A. Chipouline, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for MM with quantum ingredients,” arXiv 1104.0110 (2011).

A. Chipouline and V. Fedotov, “Towards quantum magnetic metamaterials,” in Proceedings Nanometa (2011), paper THU4s.3.

Chipouline, A. V.

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

A. S. Chirkin and A. V. Chipouline, “Generalized expression for the natural width of the radiation spectrum of quantum oscillators,” JETP Lett. 93, 114–118 (2011).
[Crossref]

Chirkin, A.

S. Akhmanov, Y. D’yakov, and A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, 1981) [in Russian].

Chirkin, A. S.

A. S. Chirkin and A. V. Chipouline, “Generalized expression for the natural width of the radiation spectrum of quantum oscillators,” JETP Lett. 93, 114–118 (2011).
[Crossref]

Cho, D. J.

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

Cho, K.

K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory, Springer Tracts in Modern Physics (Springer, 2010), Vol. 237.

Choa, F.-S.

Chong, C.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Chu, P.

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Cummer, S.

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

D’yakov, Y.

S. Akhmanov, Y. D’yakov, and A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, 1981) [in Russian].

Dai, L.

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Davidovich, L.

A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
[Crossref]

De Angelis, F.

De Lange, O.

R. Raab and O. De Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 6, 16–24 (2012).

Decker, M.

Deng, C.-S.

C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
[Crossref]

Dereux, A.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Deych, L.

C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
[Crossref]

Di Fabrizio, E.

Dickson, W.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

Dolling, G.

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

Dorofeenko, A.

dos Santos, R.

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

Drachev, V.

Draine, B. T.

Dubovik, V.

V. Dubovik and V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187, 145–202 (1990).
[Crossref]

V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).

V. Dubovik and S. Shabanov, “Essays on the formal aspects of electromagnetic theory,” in The Gauge Invariance, Toroid Order Parameters and Radiation in Electromagnetic Theory, A. Lakhakia, ed. (World Scientific, 1993), Vol. 399.

Dubovik, V. M.

V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Edwards, D.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Eich, M.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys. 12, 013015 (2010).
[Crossref]

A. Alu and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

Enoch, S.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Evlyukhin, A.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

Exter, M.

M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[Crossref]

Fabrizio, E.

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

Fain, V. M.

V. M. Fain, “Quantum radio physics, v. 1: Photons and nonlinear media,” Sovetskoe Radio (1972) [in Russian].

Fainman, Y.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Fang, A.

A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
[Crossref]

Farhat, M.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[Crossref]

Fedotov, V.

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

A. Chipouline and V. Fedotov, “Towards quantum magnetic metamaterials,” in Proceedings Nanometa (2011), paper THU4s.3.

Fedotov, V. A.

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

A. Chipouline, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for MM with quantum ingredients,” arXiv 1104.0110 (2011).

Fedyanin, A.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

Feng, L.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Feth, N.

Finot, C.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Fistul, M.

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

Flatau, P. J.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Flynn, R. A.

Ford, G.

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

Freed, K.

N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
[Crossref]

Freilikher, V.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Fu, Y. H.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

Galynsky, V.

Garcia-Meca, C.

García-Pomar, J.

Garcia-Vidal, F.

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

Gartstein, Y.

V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability,” Metamaterials 3, 1–9 (2009).
[Crossref]

V. Agranovich and Y. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Genack, A. Z.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Genov, D.

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Gersten, J.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Ghulinyan, M.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

Giessen, H.

N. Gippius, T. Weiss, S. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010).
[Crossref]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

Ginzburg, V.

V. Agranovich and V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Nauka, 1965) [Crystal Optics with Spatial Dispersion, and Excitons, Translated into English (Springer-Verlag, 1984)].

Gippius, N.

Gladden, C.

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Glass, R.

R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[Crossref]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Gneiding, N.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

Gold, J.

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

Gordon, J. A.

Gottardo, S.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

Göuney, D. Ö.

D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009).

Grahn, P.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Grajcar, M.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Grandidier, J.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Gray, S.

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Grebel, H.

A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
[Crossref]

Greenberg, Y.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Grigorenko, A.

L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Guenneau, S.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[Crossref]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Guzatov, D.

D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).

Gwo, S.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Ha, S.

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

Hadzievski, L.

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

Hafner, C.

C. Hafner, The Generalized Multipole Technique for Computational, Electromagnetics (Artech House, 1990).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005).

Hakanson, U.

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
[Crossref]

Haken, G.

G. Haken, Laser Light Dynamics (North Holland, 1985).

Haken, H.

F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].

Halas, N.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Hamm, J.

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

Han, D.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Hanarp, P.

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

Harris, S.

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

He, C.-L.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Helgert, C.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

Herz, E.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Herzig, H. P.

Hess, O.

O. Hess and K. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Hill, M.

Himmelhaus, M.

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Hoyer, W.

Hu, B.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

Huangfu, J. T.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Hübner, U.

Huebner, U.

Husnik, M.

Il’ichev, E.

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Izmalkov, A.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jan Geluk, E.

Jancewicz, B.

S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
[Crossref]

Jayabalan, J.

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

Jemovs, K.

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

Jia, Q. X.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Jonin, C.

Justice, B.

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Jylhä, L.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
[Crossref]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

Kaivola, M.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Kalkbrenner, T.

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
[Crossref]

Karouta, F.

Kasemo, B.

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

Kauranen, M.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

Khardikov, V.

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Khizhnyak, N. A.

N. A. Khizhnyak, “Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods,” Sov. Phys. Tech. Phys. 29, 604–614 (1959).

Khoury, A. Z.

A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
[Crossref]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Kik, P.

S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[Crossref]

Kildishev, A.

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[Crossref]

Kim, C. S.

Kim, E.

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

Kim, H.

B. Lee, H. Kim, and J. Park, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Kim, M.

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, 1986).

Kivshar, Y.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[Crossref]

Klein, M. W.

Kley, E. B.

Kley, E.-B.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Klimov, V.

D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).

Koch, S.

Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Koch, S. W.

Koenderink, A. F.

Kolmakov, I.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

Kolobov, M. I.

A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
[Crossref]

Kong, J. A.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

König, M.

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Koshny, T.

A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
[Crossref]

Kozyrev, A.

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

Krasavin, A.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

Krech, W.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Krenn, J.

Kriegler, C.

Kujala, S.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

Kuo, C.-T.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Kuo, P.

Kuppens, S.

M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[Crossref]

S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Kurths, J.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

Kuznetsov, A.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

Lagarkov, A. N.

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[Crossref]

Lai, Y.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Lakhtakia, A.

J. Reyes and A. Lakhtakia, “Electrically controlled reflection and transmission of obliquely incident light by structurally chiral materials,” Opt. Commun. 266, 565–573 (2006).
[Crossref]

Lalanne, P.

Lamb, H.

H. Lamb, “Negative phase velocity and its consequence in hydrodynamics: On group velocity,” Proc. London Math. Soc. s2-1, 473–479 (1904).
[Crossref]

Landau, L. D.

L. D. Landau and E. L. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1960), Chap. IX.

Lavrinenko, A.

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

Lax, M.

M. Lax, Statistical Physics, Phase Transitions and Superfluidity, M. Chrétien, E. P. Gross, and S. Deser, eds. (Gordon and Breach, 1968), p. 271.

Lazarides, N.

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

Lederer, F.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

Lee, B.

B. Lee, H. Kim, and J. Park, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Lee, T.-W.

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Lee, Y.

Leitner, A.

Leon, D.

P. Berini and D. Leon, “I. Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

Leong, E.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, J.

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Li, L.

Li, R.

A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
[Crossref]

Li, T.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Lifshitz, E. L.

L. D. Landau and E. L. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1960), Chap. IX.

Lin, H.-Q.

Lin, M.-H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Linden, S.

Lindquist, N.

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Lisyansky, A.

Liu, H.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Liu, J.

Liu, M.

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, Y.

Liver, N.

N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
[Crossref]

Lomakin, V.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Long, J. P.

López-Alonso, J.

Luk’yanchuk, B.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Ma, R.-M.

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Maier, S.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

S. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[Crossref]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

Makhnovskiy, D.

L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[Crossref]

Mäkinen, A. J.

Malakhov, A.

A. Malakhov, Fluctuations in Self Oscillatory Systems (Nauka, 1968) [in Russian].

Maluckov, A.

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

Mandelshtam, L.

L. Mandelshtam, “Full collection of publications,” Publ. Acad. Sci. USSR 1, 162–179 (1957) [in Russian].

L. Mandelshtam, Optical Properties of the Left-Handed Media: the 4th Lecture of L. I. Mandelshtam Given at Moscow State University (05/05/1944) (Nauka, 1994), Vol. 5, p. 461.

Manoranjan, P.

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

Maradudin, A.

A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787–2810 (1973).
[Crossref]

Marangos, J.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Marell, M.

Marinov, K.

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

Markey, L.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Marti, J.

Martinez, A.

Martin-Moreno, L.

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

Martsenyuk, M. A.

V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
[Crossref]

Mary, A.

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

Maslovski, S.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

S. Maslovski, “Electrodynamics of composite materials with significant spatial dispersion,” Ph.D. thesis (ITMO, 2004).

Massenot, S.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Mazur, P.

P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica 19, 971–986 (1953).
[Crossref]

McPeak, K.

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Meinzer, N.

Menzel, C.

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

Meyer, D. A.

D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009).

Meyer, H.-G.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Meyer, J. R.

Meyrath, T. P.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

Mills, D. L.

A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787–2810 (1973).
[Crossref]

Miroshnichenko, A.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

Mizrahi, A.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Mladyonov, P.

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Moeller, M.

R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[Crossref]

Mogilevtsev, D.

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

Moloney, J.

Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

Moloney, J. V.

Nagpal, P.

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Narimanov, E.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[Crossref]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

Nezhad, M.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Ng, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Ni, X.

S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
[Crossref]

Niegemann, J.

Nielsen, M.

Niesler, F. B. P.

Nijboer, B.

P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica 19, 971–986 (1953).
[Crossref]

Niklasson, G.

Nikolaenko, A.

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

Nikolaenko, A. E.

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

A. Chipouline, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for MM with quantum ingredients,” arXiv 1104.0110 (2011).

Ning, C.-Z.

Nitzan, A.

N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
[Crossref]

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

Noginov, M.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Nori, F.

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

Norris, D.

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Nötzel, R.

Novitsky, A.

O’Hara, J. F.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Oei, Y.-S.

Ögüt, B.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

Oh, S.-H.

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Oliveira, L.

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

Onsager, L.

L. Onsager, “Reciprocal Relations in irreversible processes,” Phys. Rev. 37, 405–426 (1931).
[Crossref]

Oraevsky, A.

F. Bunkin and A. Oraevsky, Izv. Vuzov, Radiophysika 2, 181 (1959).

Ortuno, R.

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[Crossref]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

Oulton, R.

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

Panina, L.

L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[Crossref]

Panov, V.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

Papasimakis, N.

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Park, J.

B. Lee, H. Kim, and J. Park, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Paul, T.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

Pavesi, L.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

Pelton, M.

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Pendry, J.

J. Pendry, “Light finds a way through maze,” Physics 1, 20 (2008).
[Crossref]

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref]

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[Crossref]

J. Pendry, “Quasi-extended electron states in strongly disordered systems,” J. Phys. C 20, 733–742 (1987).
[Crossref]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Pertsch, T.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

Petrov, A.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Petschulat, J.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

Pikhota, M.

D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).

Pikovsky, A.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

Pinheiro, F.

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

Podolskiy, A.

Podolskiy, V.

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

Pound, R.

N. Blombergen and R. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[Crossref]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Prorok, S.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Prosvirin, S.

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Prosvirnin, S.

S. Prosvirnin and N. Zheludev, “Analysis of polarization transformations by a planar chiral array of complex-shaped particles,” J. Opt. A 11, 074002 (2009).
[Crossref]

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Pshenay-Severin, E.

Pukhov, A.

Purcell, E. M.

E. M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Pusch, A.

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Pustovit, V.

Pustovit, V. N.

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

Qiu, T.

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

Quinten, M.

Raab, R.

R. Raab and O. De Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

Radko, I.

Radkovskaya, A.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Raikh, M.

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

Ramakrishna, S.

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[Crossref]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

Ran, L. X.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Reinhold, J.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

Reyes, J.

J. Reyes and A. Lakhtakia, “Electrically controlled reflection and transmission of obliquely incident light by structurally chiral materials,” Opt. Commun. 266, 565–573 (2006).
[Crossref]

Rico-García, J.

Rill, M.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Robert Johansson, J.

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

Rockstuhl, C.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969–1973 (2003).
[Crossref]

Rodrigo, S.

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

Rodriguez-Fortuno, F. J.

Rogacheva, A.

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

Rogacheva, A. V.

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Rosenblum, M.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

Rusakoff, G.

G. Rusakoff, “A derivation of the macroscopic Maxwell equations,” Am. J. Phys. 38, 1188–1195 (1970).
[Crossref]

Russier-Antoine, I.

Rustagi, K. C.

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

Ruther, M.

Rüting, F.

F. Rüting, “Plasmons in disordered nanoparticle chains: localization and transport,” arXiv:1102.2705v1 (2011).

Ruzin, I.

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

Saha, B.

V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
[Crossref]

Salt, M. G.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sandoghdar, V.

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
[Crossref]

Sarychev, A.

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[Crossref]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

A. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003).
[Crossref]

Sarychev, A. K.

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[Crossref]

Savinov, V.

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

Schawlow, A.

A. Schawlow and C. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Schultz, S.

R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Schuster, A.

A. Schuster, Negative Phase Velocity and Its Consequence in Optics: An Introduction to the Theory of Optics (Edward Arnold, 1904).

Schwanecke, A.

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Scully, M.

F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].

Sebbah, P.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

Shabanov, S.

V. Dubovik and S. Shabanov, “Essays on the formal aspects of electromagnetic theory,” in The Gauge Invariance, Toroid Order Parameters and Radiation in Electromagnetic Theory, A. Lakhakia, ed. (World Scientific, 1993), Vol. 399.

Shadrivov, I.

S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[Crossref]

Shahbazyan, T. V.

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shalaev, V.

S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
[Crossref]

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

U. Chettiar, A. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, and V. Shalaev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 32, 1671 (2007).
[Crossref]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

A. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003).
[Crossref]

Shalaev, V. M.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advanced and outlook,” Metamaterials 2, 1–17(2008).

Shamonina, E.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Sharma, N.

N. Sharma, “Nondipole optical scattering from liquids and nanoparticles,” Phys. Rev. Lett. 98, 217402 (2007).
[Crossref]

Shcherbakov, M.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

Shelby, R.

R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shen, Y. R.

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

Shevchenko, A.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Shin, Y.

Shivola, A.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

Shvets, G.

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Sigle, W.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

Sihvola, A.

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
[Crossref]

S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
[Crossref]

Simic, A.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Simovski, C.

A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
[Crossref]

C. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009).
[Crossref]

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

C. Simovski, Weak Spatial Dispersion in Composite Media (Polytechnika, 2003) [in Russian].

Singer, J.

J. Singer, Masers (Wiley, 1959).

Singh, R.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Singleton, D.

D. Singleton, “Electromagnetism with magnetic charge and two photons,” Am. J. Phys. 64, 452–458, 1996.
[Crossref]

Slutsky, B.

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Smalbrugge, B.

Smit, M.

Smith, D.

R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Sokoulis, C.

A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
[Crossref]

Solymar, L.

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

Sorger, V.

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Sotelo, J.

Soukoulis, C.

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Soukoulis and M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

M. Wegener, J. García-Pomar, C. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[Crossref]

G. Dolling, M. Wegener, and C. Soukoulis, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55(2007).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Spatz, J. P.

R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[Crossref]

Stannigel, K.

Starr, A.

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Stepanovsky, Y. P.

G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary time-dependent toroidal sources,” J. Phys. A 28, 4565–4580 (1995).
[Crossref]

Stevens, C.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Stockman, M.

M. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

M. Stockman, “Spaser action, loss-compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett 106, 156802 (2011).
[Crossref]

M. Stockman, “The spaser as a nanoscale quantum generator and amplifier,” J. Opt. 12, 024004 (2010).
[Crossref]

M. Stockman, “Spaser explained,” Nat. Photonics 2, 327–329 (2008).
[Crossref]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

Stout, S.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Strandberg, M.

M. Strandberg, “Inherent noise of quantum-mechanical amplifiers,” Phys. Rev. 106, 617–620 (1957).
[Crossref]

Sugavanam, S.

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

Suh, W.

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sukhorukov, A.

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Sun, M.

Sun, Y.

Suteewong, T.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Sutherland, D.

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[Crossref]

Sydoruk, O.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005).

Talebi, N.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

Tan, W.

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

Tartakovskii, A.

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

Tartakovsky, G.

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[Crossref]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Tatartschuk, E.

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

Taylor, A. J.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Thiel, M.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tikhodeev, S.

Tosunyan, L.

V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).

Townes, C.

A. Schawlow and C. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Tretyakov, S.

A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
[Crossref]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
[Crossref]

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
[Crossref]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

Troitskii, V. S.

V. S. Troitskii, Zh. Eksp. Teor. Fiz. 34, 390 (1958) [Sov. Phys. JETP 7, 271 (1958)]; Radiotekhn. Elektron. 3, 1298, 1958.

Trugman, S. A.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Tsai, D.

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

Tsai, D. P.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

Tsakmakidis, K.

O. Hess and K. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013).
[Crossref]

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

Tsironis, G.

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

Tuennermann, A.

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Tüennermann, A.

Tugushev, V.

V. Dubovik and V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187, 145–202 (1990).
[Crossref]

V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).

Tunnermann, A.

Tünnermann, A.

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

Tüunnermann, A.

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

Ulin-Avila, G.

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Urbas, A. M.

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

Ustinov, A.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

van Aken, P. A.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

van den Brink, A.-M.

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

van Exter, M.

S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[Crossref]

van Veldhoven, P.

Veselago, V.

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Vinogradov, A.

E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express 19, 24849–24857 (2011).
[Crossref]

A. Vinogradov and A. Aivazyan, “Scaling theory of homogenization of the Maxwell equations,” Phys. Rev. E 60, 987–993 (1999).
[Crossref]

A. Vinogradov, Electrodynamics of Compound Media (Scientific and educational literature publisher, 2001) (in Russian).

Vo, T.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

Vogelgesang, R.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

von Freymann, G.

Vuckovic, J.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref]

Vukovic, S.

S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
[Crossref]

Vurgaftman, I.

Waks, E.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

Wang, C.-Y.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Wang, F.

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

Wang, S.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Wang, Y.

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Wang, Z.

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Wang, Z.-G.

Weber, W.

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

Weeber, J.-C.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

Wegener, M.

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Soukoulis and M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref]

N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18, 6545 (2010).
[Crossref]

M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 3419–21 (2009).
[Crossref]

M. Wegener, J. García-Pomar, C. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[Crossref]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975–1977 (2008).
[Crossref]

G. Dolling, M. Wegener, and C. Soukoulis, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55(2007).
[Crossref]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

M. Wegener, Extreme Nonlinear Optics (Springer, 2005).

Weide, D.

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

Weidlich, W.

F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].

Weiss, T.

Whitehouse, C.

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

Wiersma, D. S.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

Wiesner, U.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Woerdman, J.

M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[Crossref]

S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Worsfold, O.

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

Wright, J.

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

Wu, C.-Y.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Wu, W.

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

Wuestner, S.

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Xiao, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Xiao, S.

S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
[Crossref]

U. Chettiar, A. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, and V. Shalaev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 32, 1671 (2007).
[Crossref]

Xu, H.

C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Yang, C. C.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

Yang, H.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Yang, J.

Yanik, M.

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975).

Ye, W.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

Yin, Y.

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

Yu, Y. F.

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

Yu, Z.

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

Yuan, H.-K.

Yuan, X.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Zagoskin, A. M.

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

Zayats, A.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

Zeldovich, I. B.

I. B. Zeldovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

Zeng, Y.

Zentgraf, T.

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, X.

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

Zhang, X. M.

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

Zhang, Z.-Q.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

Zhao, X.

Zharov, A.

A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[Crossref]

Zheludev, N.

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

N. Zheludev, “A roadmap for metamaterials,” Opt. Photon. News 3122(3), 30–35(2011).
[Crossref]

N. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

S. Prosvirnin and N. Zheludev, “Analysis of polarization transformations by a planar chiral array of complex-shaped particles,” J. Opt. A 11, 074002 (2009).
[Crossref]

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

Zhou, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

Zhou, X.

Zhu, G.

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Zhu, S.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Zhu, Y.

Zhu, Z.

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

Zhukovsky, S.

Zhuravel, A.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Ziolkowski, R. W.

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

Adv. Mater. (1)

J. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultra at ternary nanopatterns fabricated using colloidal lithography,” Adv. Mater. 18, 421–426 (2006).
[Crossref]

Adv. Optoelectron. (1)

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the multipole approach to random metamaterials,” Adv. Optoelectron. 2012, 1–16 (2012).
[Crossref]

Am. J. Phys. (2)

D. Singleton, “Electromagnetism with magnetic charge and two photons,” Am. J. Phys. 64, 452–458, 1996.
[Crossref]

G. Rusakoff, “A derivation of the macroscopic Maxwell equations,” Am. J. Phys. 38, 1188–1195 (1970).
[Crossref]

Appl. Phys. A (1)

A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole approach in electrodynamics of metamaterials,” Appl. Phys. A 103, 899–904 (2011).
[Crossref]

Appl. Phys. Lett. (9)

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009).
[Crossref]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[Crossref]

S. Vukovic, I. Shadrivov, and Y. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
[Crossref]

B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, and J. Turunen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Appl. Phys. Lett. 86, 183109 (2005).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86, 151909 (2005).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008).
[Crossref]

Z. Zhu, H. Liu, S. Wang, T. Li, J. Cao, W. Ye, X. Yuan, and S. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett. 94, 103106 (2009).
[Crossref]

A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett. 95, 251106 (2009).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Izv. Vuzov, Radiophysika (1)

F. Bunkin and A. Oraevsky, Izv. Vuzov, Radiophysika 2, 181 (1959).

J. Appl. Phys. (1)

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[Crossref]

J. Chem. Phys. (2)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

N. Liver, A. Nitzan, and K. Freed, “Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles,” J. Chem. Phys. 82, 3831–3840 (1985).
[Crossref]

J. Electromagn. Waves Appl. (3)

S. Tretyakov, A. Sihvola, and B. Jancewicz, “Onsager-Casimir principle and the constitutive relations of bi-nisotropic media,” J. Electromagn. Waves Appl. 16, 573–587 (2002).
[Crossref]

L. Arnaut, “Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media,” J. Electromagn. Waves Appl. 11, 1459–1482 (1997).
[Crossref]

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695–706 (2003).
[Crossref]

J. Exp. Theor. Phys. (1)

I. B. Zeldovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

J. Opt. (4)

S. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

M. Stockman, “The spaser as a nanoscale quantum generator and amplifier,” J. Opt. 12, 024004 (2010).
[Crossref]

A. Chipouline, S. Sugavanam, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for active metamaterials with quantum ingredients,” J. Opt. 14, 114005 (2012).
[Crossref]

C. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[Crossref]

J. Opt. A (3)

S. Prosvirnin and N. Zheludev, “Analysis of polarization transformations by a planar chiral array of complex-shaped particles,” J. Opt. A 11, 074002 (2009).
[Crossref]

V. Podolskiy, A. Sarychev, E. Narimanov, and V. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A 7, S32–S37 (2005).
[Crossref]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A 7, S110 (2005).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (2)

J. Phys. A (2)

G. Afanasiev, “Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering,” J. Phys. A 27, 2143–2160 (1994).
[Crossref]

G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary time-dependent toroidal sources,” J. Phys. A 28, 4565–4580 (1995).
[Crossref]

J. Phys. C (1)

J. Pendry, “Quasi-extended electron states in strongly disordered systems,” J. Phys. C 20, 733–742 (1987).
[Crossref]

J. Phys. D (1)

G. Afanasiev, “Simplest source of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34, 539–559 (2001).
[Crossref]

JETP Lett. (1)

A. S. Chirkin and A. V. Chipouline, “Generalized expression for the natural width of the radiation spectrum of quantum oscillators,” JETP Lett. 93, 114–118 (2011).
[Crossref]

Laser Phys. (1)

D. Guzatov, V. Klimov, and M. Pikhota, “Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation,” Laser Phys. 20, 85–99 (2010).

Metamaterials (3)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advanced and outlook,” Metamaterials 2, 1–17(2008).

V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability,” Metamaterials 3, 1–9 (2009).
[Crossref]

A. Chipouline, C. Simovski, and S. Tretyakov, “Basics of averaging of the Maxwell equations for bulk materials,” Metamaterials 6, 77–120 (2012).
[Crossref]

Nano Energy (1)

Y. Yin, T. Qiu, J. Li, and P. Chu, “Plasmonic nano-lasers,” Nano Energy 1, 25–41 (2012).
[Crossref]

Nano Lett. (6)

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref]

V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, and S. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004).
[Crossref]

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12, 5239–5244 (2012).
[Crossref]

Nanostruct. Mater. (1)

P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostruct. Mater. 12, 429–432 (1999).
[Crossref]

Nanotechnology (1)

R. Glass, M. Moeller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[Crossref]

Nat. Commun. (2)

A. Miroshnichenko, A. Evlyukhin, Y. F. Yu, R. Bakker, A. Chipouline, A. Kuznetsov, B. Luk’yanchuk, B. Chichkov, and Y. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

Nat. Lett. (1)

S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H.-K. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nat. Lett. 466, 735–738 (2010).
[Crossref]

Nat. Mater. (4)

R.-M. Ma, R. Oulton, V. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nat. Photonics (8)

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

M. Stockman, “Spaser explained,” Nat. Photonics 2, 327–329 (2008).
[Crossref]

N. Zheludev, S. Prosvirin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

P. Berini and D. Leon, “I. Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

L. Cao and M. Brongersma, “Active photonics: Ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 6, 16–24 (2012).

Nature (5)

M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

New J. Phys. (3)

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys. 12, 013015 (2010).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9, 324 (2007).
[Crossref]

Opt. Commun. (1)

J. Reyes and A. Lakhtakia, “Electrically controlled reflection and transmission of obliquely incident light by structurally chiral materials,” Opt. Commun. 266, 565–573 (2006).
[Crossref]

Opt. Express (19)

A. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003).
[Crossref]

A. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20, 6068–6079 (2012).
[Crossref]

W. Tan, Y. Sun, Z.-G. Wang, H. Chen, and H.-Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Opt. Express 17, 24371–24376 (2009).
[Crossref]

N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18, 6545 (2010).
[Crossref]

N. Gippius, T. Weiss, S. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref]

I. Radko, M. Nielsen, O. Albrektsen, and S. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010).
[Crossref]

E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Huebner, A. Tuennermann, and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-wire structures,” Opt. Express 19, 6269–6283 (2011).
[Crossref]

R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5  μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]

M. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express 19, 24849–24857 (2011).
[Crossref]

X. Zhou, X. Zhao, and Y. Liu, “Disorder effects of left-handed metamaterials with unitary dendritic structure cell,” Opt. Express 16, 7674–7679 (2008).
[Crossref]

S. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
[Crossref]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007).
[Crossref]

M. Wegener, J. García-Pomar, C. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[Crossref]

I. Shadrivov, A. Kozyrev, D. Weide, and Y. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

M. Hill, M. Marell, E. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[Crossref]

Opt. Lett. (13)

S. Zhukovsky, A. Novitsky, and V. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988–1990 (2009).
[Crossref]

C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603 (2009).
[Crossref]

E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680 (2009).
[Crossref]

M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 3419–21 (2009).
[Crossref]

C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).
[Crossref]

U. Chettiar, A. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, and V. Shalaev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 32, 1671 (2007).
[Crossref]

G. Dolling, M. Wegener, and C. Soukoulis, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55(2007).
[Crossref]

Y. Shin, A. Chavez-Pirson, and Y. Lee, “Multipole analysis of the radiation from near-field optical probes,” Opt. Lett. 25, 171–173 (2000).
[Crossref]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975–1977 (2008).
[Crossref]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

D. Bethune, “Quadrupole second-harmonic generation for a focused beam of arbitrary transverse structure and polarization,” Opt. Lett. 6, 287–289 (1981).
[Crossref]

M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

Opt. Photon. News (1)

N. Zheludev, “A roadmap for metamaterials,” Opt. Photon. News 3122(3), 30–35(2011).
[Crossref]

Opt. Spectrosc. (1)

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009).
[Crossref]

Philos. Trans. R. Soc. A (1)

S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. A 369, 3525–3550 (2011).
[Crossref]

Photon. Nanostruct. Fundam. Appl. (1)

S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and negative refraction in chiral composites,” Photon. Nanostruct. Fundam. Appl. 3, 107–115 (2005).
[Crossref]

Phys. Rep. (1)

V. Dubovik and V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187, 145–202 (1990).
[Crossref]

Phys. Rev. (6)

N. Blombergen and R. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[Crossref]

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[Crossref]

L. Onsager, “Reciprocal Relations in irreversible processes,” Phys. Rev. 37, 405–426 (1931).
[Crossref]

A. Schawlow and C. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

E. M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

M. Strandberg, “Inherent noise of quantum-mechanical amplifiers,” Phys. Rev. 106, 617–620 (1957).
[Crossref]

Phys. Rev. A (6)

A. Z. Khoury, M. I. Kolobov, and L. Davidovich, “Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening,” Phys. Rev. A 53, 1120–1125 (1996).
[Crossref]

M. Exter, S. Kuppens, and J. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[Crossref]

D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009).

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009).
[Crossref]

C.-S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Phys. Rev. A 82, 041803(R) (2010).
[Crossref]

Phys. Rev. B (28)

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

S. Maier, P. Kik, and H. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[Crossref]

E. Tatartschuk, A. Radkovskaya, E. Shamonina, and L. Solymar, “Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling,” Phys. Rev. B 81, 115110 (2010).
[Crossref]

A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, and L. Solymar, “Surface waves at an interface of two metamaterial structures with interelement coupling,” Phys. Rev. B 82, 045430 (2010).
[Crossref]

A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, and E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84, 125121 (2011).
[Crossref]

D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, and L. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[Crossref]

L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

J. Jayabalan, P. Manoranjan, A. Banerjee, and K. C. Rustagi, “Linear and nonlinear second-order polarizabilities of hemispherical and sector-shaped metal nanoparticles,” Phys. Rev. B 77, 045421 (2008).
[Crossref]

E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102 (2008).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. B 78, 043811 (2008).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[Crossref]

A. Andryieuski, S. Ha, A. Sukhorukov, Y. Kivshar, and A. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
[Crossref]

A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787–2810 (1973).
[Crossref]

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[Crossref]

V. N. Pustovit, A. M. Urbas, A. V. Chipouline, and T. V. Shahbazyan, “Coulomb and quenching effects in small nanoparticle-based spacers,” Phys. Rev. B 93, 165432(2016).

A. Fang, T. Koshny, and C. Sokoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
[Crossref]

Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[Crossref]

J. Reinhold, M. Shcherbakov, A. Chipouline, V. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.-B. Kley, A. Tünnermann, A. Fedyanin, and T. Pertsch, “The contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86, 115401 (2012).
[Crossref]

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[Crossref]

Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, W. Krech, H.-G. Meyer, M. H. S. Amin, and A.-M. van den Brink, “Low frequency characterization of quantum tunneling in flux qubits,” Phys. Rev. B 66, 214525 (2002).
[Crossref]

Phys. Rev. E (5)

A. Vinogradov and A. Aivazyan, “Scaling theory of homogenization of the Maxwell equations,” Phys. Rev. E 60, 987–993 (1999).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

A. Maluckov, L. Hadzievski, N. Lazarides, and G. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008).
[Crossref]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

V. M. Dubovik, M. A. Martsenyuk, and B. Saha, “Material equations for electromagnetism with toroidal polarizations,” Phys. Rev. E 61, 7087–7097 (2000).
[Crossref]

Phys. Rev. Lett (1)

M. Stockman, “Spaser action, loss-compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett 106, 156802 (2011).
[Crossref]

Phys. Rev. Lett. (25)

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. Zheludev, “Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial,” Phys. Rev. Lett. 105, 227403 (2010).
[Crossref]

A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, and N. Zheludev, “Carbon nanotubes in a photonic metamaterials,” Phys. Rev. Lett. 104, 153902 (2010).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

A. Mary, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[Crossref]

S. Kuppens, M. van Exter, and J. Woerdman, “Quantum limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[Crossref]

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref]

M. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

S. Zhang, D. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94, 113903 (2005).
[Crossref]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one dimensional dissipative random systems,” Phys. Rev. Lett. 97, 243904 (2006).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007).
[Crossref]

A. Zharov, I. Shadrivov, and Y. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[Crossref]

N. Sharma, “Nondipole optical scattering from liquids and nanoparticles,” Phys. Rev. Lett. 98, 217402 (2007).
[Crossref]

N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett. 103, 093901 (2009).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

A. Alu and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901 (2009).
[Crossref]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009).
[Crossref]

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, and C. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Phys. Usp. (1)

V. Agranovich and Y. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Physica (1)

P. Mazur and B. Nijboer, “On the statistical mechanics of matter in an electromagnetic field. I,” Physica 19, 971–986 (1953).
[Crossref]

Physics (1)

J. Pendry, “Light finds a way through maze,” Physics 1, 20 (2008).
[Crossref]

Proc. London Math. Soc. (1)

H. Lamb, “Negative phase velocity and its consequence in hydrodynamics: On group velocity,” Proc. London Math. Soc. s2-1, 473–479 (1904).
[Crossref]

Prog. Electromagn. Res. (1)

H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Magnetic properties of s-shaped split-ring resonators,” Prog. Electromagn. Res. 51, 231–247 (2005).
[Crossref]

Publ. Acad. Sci. USSR (1)

L. Mandelshtam, “Full collection of publications,” Publ. Acad. Sci. USSR 1, 162–179 (1957) [in Russian].

Rep. Prog. Phys. (1)

N. Lindquist, P. Nagpal, K. McPeak, D. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Rev. Mod. Phys. (2)

H. Casimir, “On Onsager’s principle of microscopic reversibility,” Rev. Mod. Phys. 17, 343–350 (1945).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Sci. Rep. (3)

A. M. Zagoskin, A. Chipouline, E. Il’ichev, J. Robert Johansson, and F. Nori, “Toroidal qubits: naturally decoupled quiet artificial atoms,” Sci. Rep. 5, 16934 (2015).
[Crossref]

V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, and N. I. Zheludev, “Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials,” Sci. Rep. 3, 2967 (2013).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Science (11)

C. Soukoulis and M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

O. Hess and K. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref]

E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

N. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[Crossref]

R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

B. Justice, S. Cummer, J. Pendry, and A. Starr, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref]

Sov. Phys. Semicond. (1)

A. Tartakovskii, M. Fistul, M. Raikh, and I. Ruzin, “Hopping conductivity of metal-semiconductor metal contacts,” Sov. Phys. Semicond. 21, 370–378 (1987).

Sov. Phys. Tech. Phys. (1)

N. A. Khizhnyak, “Anomalously large effective dielectric and magnetic constants for the resonant regimes of elementary scatterers: artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods,” Sov. Phys. Tech. Phys. 29, 604–614 (1959).

Sov. Phys. Usp. (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Zh. Eksp. Teor. Fiz. (2)

V. Dubovik, L. Tosunyan, and V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Zh. Eksp. Teor. Fiz. 90, 590–605 (1986).

V. S. Troitskii, Zh. Eksp. Teor. Fiz. 34, 390 (1958) [Sov. Phys. JETP 7, 271 (1958)]; Radiotekhn. Elektron. 3, 1298, 1958.

Other (32)

J. Singer, Masers (Wiley, 1959).

A. Malakhov, Fluctuations in Self Oscillatory Systems (Nauka, 1968) [in Russian].

F. Arecchi, M. Scully, H. Haken, and W. Weidlich, Quantum Fluctuations of Laser Emission (Mir, 1974) [in Russian].

M. Lax, Statistical Physics, Phase Transitions and Superfluidity, M. Chrétien, E. P. Gross, and S. Deser, eds. (Gordon and Breach, 1968), p. 271.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975).

G. Haken, Laser Light Dynamics (North Holland, 1985).

S. Akhmanov, Y. D’yakov, and A. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, 1981) [in Russian].

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

A. Chipouline, V. A. Fedotov, and A. E. Nikolaenko, “Analytical model for MM with quantum ingredients,” arXiv 1104.0110 (2011).

V. M. Fain, “Quantum radio physics, v. 1: Photons and nonlinear media,” Sovetskoe Radio (1972) [in Russian].

A. Chipouline and V. Fedotov, “Towards quantum magnetic metamaterials,” in Proceedings Nanometa (2011), paper THU4s.3.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Metamaterials with interacting metaatoms,” arXiv:1205.6839 (2012), http://arxiv.org/abs/1205.6839 .

F. Rüting, “Plasmons in disordered nanoparticle chains: localization and transport,” arXiv:1102.2705v1 (2011).

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

H. Raether, Surface Plasmons (Springer, 1988).

A. Schuster, Negative Phase Velocity and Its Consequence in Optics: An Introduction to the Theory of Optics (Edward Arnold, 1904).

L. Mandelshtam, Optical Properties of the Left-Handed Media: the 4th Lecture of L. I. Mandelshtam Given at Moscow State University (05/05/1944) (Nauka, 1994), Vol. 5, p. 461.

A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005).

C. Hafner, The Generalized Multipole Technique for Computational, Electromagnetics (Artech House, 1990).

V. Agranovich and V. Ginzburg, Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Nauka, 1965) [Crystal Optics with Spatial Dispersion, and Excitons, Translated into English (Springer-Verlag, 1984)].

L. D. Landau and E. L. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1960), Chap. IX.

K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory, Springer Tracts in Modern Physics (Springer, 2010), Vol. 237.

C. Kittel, Introduction to Solid State Physics (Wiley, 1986).

B. Lee, H. Kim, and J. Park, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

R. Raab and O. De Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

M. Wegener, Extreme Nonlinear Optics (Springer, 2005).

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

A. Vinogradov, Electrodynamics of Compound Media (Scientific and educational literature publisher, 2001) (in Russian).

C. Simovski, Weak Spatial Dispersion in Composite Media (Polytechnika, 2003) [in Russian].

V. Dubovik and S. Shabanov, “Essays on the formal aspects of electromagnetic theory,” in The Gauge Invariance, Toroid Order Parameters and Radiation in Electromagnetic Theory, A. Lakhakia, ed. (World Scientific, 1993), Vol. 399.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

S. Maslovski, “Electrodynamics of composite materials with significant spatial dispersion,” Ph.D. thesis (ITMO, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1.
Fig. 1.

Artificial MAs (plasmonic nanoresonators) embedded in a dielectric matrix form a MM (only one layer is presented). Polarization of the electric and magnetic fields, and direction of the wave vector are shown.

Fig. 2.
Fig. 2.

One of the possible shapes of MAs, possessing (a) symmetric and (b) antisymmetric modes. Electric field Ex of the incoming wave, propagating along the y-axis excites eigenmodes of the plasmonic MA.

Fig. 3.
Fig. 3.

Reference [85]: Double-wire MM geometry and corresponding suitable charge distributions that support electric dipole, electric quadrupole, and magnetic dipole moments. The dynamics including interactions between the top and the bottom wires is described by a coupled harmonic oscillator model, which is indicated by the red arrows.

Fig. 4.
Fig. 4.

Reference [85]: (a) Geometry of the simulated double-wire meta-atom is shown. (b) Three-dimensional (3D) bulk MM alignment to calculate the dispersion relation of a bulk MM, and (c) the slab arrangement which allows additionally the calculation of effective parameters.

Fig. 5.
Fig. 5.

Reference [85]: (a) Dispersion relation obtained from the numerical calculations in an infinite 3D MM as shown in Fig. 4(b), and (b) the corresponding fitted analytical version.

Fig. 6.
Fig. 6.

Reference [84]: (a) The original SRR structure (left), the first modification, namely, the L (center), and the second modification, the S structure (right); (b) the SRR together with the carrier oscillators, marked by black dots, which are used to phenomenologically replace the SRR.

Fig. 7.
Fig. 7.

Reference [97]: The rigorously calculated (FMM) far-field transmission/reflection spectra compared with those obtained by the coupled dipole model (DM) for the two indicated polarization directions [(a) x polarization and (b) z polarization]. The stationary carrier elongation (normalized imaginary part of x1,3 and z2) for the two corresponding polarizations [(c) and (d)]; (e) and (f) are the exactly retrieved parameters compared to calculations performed with the model.

Fig. 8.
Fig. 8.

Reference [97]: The far-field response of the L structure for (a) x and (b) z polarization. In addition to the numerical (FMM, circles) and the fitted data (DM, solid lines), the predicted spectra incorporating the SRR parameters (dashed–dotted lines) are plotted. (c),(d) In contrast to the SRR both eigenmodes can be excited for each polarization direction. The respective numerical cross-polarization contributions (FMM, circles) compared with the model-predicted (dashed–dotted lines) and the fitted (solid lines) values are shown in (e) and (f). Note that figures (e) and (f) are identical as required for such kind of effective media and are only shown for completeness.

Fig. 9.
Fig. 9.

Reference [97]: The far-field spectra of the S structure (a) x polarization and (b) z polarization obtained by numerical simulations (circles), predictions based on the SRR structure parameters (dashed–dotted lines), and adapting the parameters to fit the numerical values (solid lines). The carrier eigenmodes, i.e., an in line current over the entire structure and antiparallel currents (normalized imaginary part of x1(ω),z2(ω),x3(ω)) with respect to the center part of the S structure are observed for the two polarization directions (d) x and (e) z. The comparison between the cross-polarization contributions (Tij,Rij) for the numerical simulations (circles), the predicted lines from the SRR parameters (dashed–dotted lines), and the fitted parameter spectra (solid lines) for the found parameters deduced for fitting the copolarized response (Tij,Rij). (c) The effective permittivity tensor, (f) diagonal, and (i) the off-diagonal components.

Fig. 10.
Fig. 10.

Transmission/reflection spectra and respective permittivity of the MM with the MAs shown in insets in (a) and (b), calculated data and (c) and (d), data from [109], Fig. 3, are presented here for comparison.

Fig. 11.
Fig. 11.

(Reference [81], Fig. 2): Decomposition of the contribution to the far-field scattering with electric dipole symmetry in terms of spherical and Cartesian multipoles. We consider scattering by a dielectric spherical particle inside as a function of diameter for refractive index n=4 and wavelength 550 nm: (a) scattering |aE(1,1)| and internal |dE(1,1)| Mie coefficients; (b) partial scattering cross section and energy density of the electric dipole; (c) calculated spherical electric dipole |Psph| (black), Cartesian electric |Pcar| (red), and toroidal |Tcar| (green) dipole moments contributions to the partial scattering. These figures demonstrate that for small particles both contributions of the spherical and Cartesian electric dipoles are identical and the toroidal moment is negligible. For larger sizes, the contribution of the toroidal dipole moments to the total scattered field has to be taken into account. The anapole excitation is associated with the vanishing of the spherical electric dipole Psph=0, when the Cartesian electric and toroidal dipoles cancel each other.

Fig. 12.
Fig. 12.

Reference [132]: Geometry of propagation: (a) the electric field is polarized along the long axis of the cut-wires, angular incidence gives rise to spatial modes in the ensemble; (b) the dipoles in an arbitrary triplet are labeled as n, n+1, and n1. The positional coordinates of the charge clouds xn within these dipoles are also indexed with these labels.

Fig. 13.
Fig. 13.

Reference [137]: Nearest neighbor interactions—top view of the one-dimensional chain of the quadrupoles (two double-wires forming one from the three shown quadrupoles are surrounded by dashed frame). The dashed lines indicate the interactions that have to be taken into account for xn. Point P indicates the center of the n-th quadrupole.

Fig. 14.
Fig. 14.

Reference [137]: Electromagnetic dispersion curves for the system consisting of the one-dimensional chain of the coupled dipoles and quadrupoles for two spatial periods. (a), (b), (e) and (f) depict the dispersion relations for the dipole system, while (c), (d), (g), and (h) depict the dispersion relations for the quadrupole system. The first row depicts the real part of the normalized propagation vector kyy1, while the bottom row depicts the imaginary part. The values were obtained with the incident angle as parameter (blue, 0; green, π/8; cyan, π/4; red, π/2). Note the disappearance of the resonance associated with the quadrupole and magnetic dipole moments at the incident angle of π/2.

Fig. 15.
Fig. 15.

Reference [132]: Geometry of the MAs and their respective probability distributions; the spheres show MAs. The first (top) row shows a regular arrangement of the MAs, where each MA occupies the center of a slot with the length equal to the mean period. The second row depicts an arrangement of the MAs exhibiting random uncorrelated positional disorder (denoted by ρk), the extent of the disorder being governed by PDF(ρk) as shown in the last (bottom) row.

Fig. 16.
Fig. 16.

Reference [132]: Effective material parameter curves for dipole ensembles exhibiting positional disorder. The effective permittivity and permeability curves for disordered dipole ensembles are presented for different values of disorder. The first column pertains to values obtained for a mean period of zn=1.2, while the second column relates to those obtained for a mean period of zn=1.8. For the respective periodicities: (a),(b) the positional disorder function; (c),(d) the respective inter-separation PDFs; (e),(f) scaled real part of the permittivity; (g),(h) scaled imaginary parts of the permittivity. Clearly, an increase in disorder brings about a fall in the maximums of the response of the system.

Fig. 17.
Fig. 17.

Reference [132]: Dispersion and effective material parameter curves for quadrupole ensemble with zn=1.8. (a) Positional disorder function; (b) inter-separation PDF; (c),(d) real and imaginary parts of k-vector (normalized with the double-wire separation distance a0=2y1); (e),(f) real and imaginary parts of effective permittivity; (g),(h) real and imaginary parts of effective permeability.

Fig. 18.
Fig. 18.

Reference [97]: (a) SRR meta-atom and the intrinsic currents for the fundamental electric (black solid line) and magnetic (black dashed line) mode. (b) The associated auxiliary charge distribution (red points) with predefined degrees of freedom (black arrows).

Fig. 19.
Fig. 19.

Reference [97]: Evolution of normalized electric field intensity for (a) the fundamental field (FF) and (b) the second harmonic (SH) as a function of the wavenumber of the fundamental. The red lines indicate the real (dashed) and the imaginary parts (solid) of the linear dispersion relation. (c),(d) The corresponding results for the undepleted pump approximation (UDPA).

Fig. 20.
Fig. 20.

Reference [175]: Parameters of the model and uncompensated charge density distribution in the unit cell of the fishnet MM for (a) antisymmetric and (b) symmetric resonances and corresponding far-field radiation patterns. The blue area between the gold layers is shown for better understanding of the layout; no influence of the dielectric is assumed in the model.

Fig. 21.
Fig. 21.

Reference [175]: Subplots (a)–(d) show the third-harmonic signal as a function of the angle of incidence for different wavelengths in the spectral vicinity to the magnetic resonance. For comparison, (e)–(h) show the linear absorption Aλ at the same fundamental wavelengths and (i)–(l) show the linear transmission T at the corresponding third-harmonic wavelengths. The vertical dashed lines indicate the angular positions of the appearance and the disappearance of diffraction orders. The black dots represent the experimental data and the dotted lines represent the simulation results. The solid lines are curves calculated using an analytical model which describes the nonlinear response of coupled oscillators.

Fig. 22.
Fig. 22.

Reference [181]: Schematic of the modeled active hybrid MM with quantum ingredients: an array of plasmonic nanoresonators (classic system, CS) covered with a layer of carbon nanotubes (quantum system, QS). ECS is the local field acting on the carbon nanotubes, which is produced by the dipole moments induced in the MM nanoresonators; EQS is the local field acting on the nanoresonators, which is produced by the dipole moments induced in the carbon nanotubes. © IOP Publishing. Reproduced with permission. All rights reserved.

Fig. 23.
Fig. 23.

Reference [181]: Schematic representation of the interaction between the plasmonic nanoresonator [classic system (CS), yellow block] covered with a layer of quantum systems (QS, red circles). ECS is the field produced by the CS and acting on the QS, EQS is the field produced by the QS and acting on the CS, EEXT is the external filed field acting on both the CS and QS. © IOP Publishing. Reproduced with permission. All rights reserved.

Fig. 24.
Fig. 24.

Reference [181]: Normalized absorption change spectrum of CNTs combined with MM for (a) homogeneous and (b) inhomogeneous cases. Saturation parameter is S0=|A|2|As,0|2=3. © IOP Publishing. Reproduced with permission. All rights reserved.

Fig. 25.
Fig. 25.

Analytical (red and blue curves) and numerical results (black curves) of the variance (Δϕ(τ))2 as a function of time delay. The curves are plotted for the following parameters: λ=0.532  μm, |d|=2.5·1017  esu, γ1=109  s1, γ2=1013  s1, N0=1017  cm3, DSP=2·107. The resonator field attenuation rates are: (a) γ=107  s1, which corresponds to an ordinary laser with high-quality resonator, and (b) γ=1013  s1, which corresponds to the nanoresonator.

Fig. 26.
Fig. 26.

Propagation of the plane wave through the MM consisting of quadrupole-like MAs. Two deeps correspond for antisymmetric 3.04 THz and symmetric 3.24 THz modes of MAs. Positions of the symmetric, antisymmetric, and quantum system (QS) gain peak frequencies are shown by arrows. (a) The loss compensation regime with totally uncoupled QSs near the symmetric mode 3.24 THz. (b) The loss compensation regime with totally coupled QS in MM with quadrupole-like MAs.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

{rote=1cbtdivb=0dive=4πρrotb=1cet+4πcj{ρ=iqiδ(rri)j=iviqiδ(rri)dpidt=qie+qic[vi*h].
{rote=1cbtdivb=0dive=4πρrotb=1cet+4πcjρ=iqiδ(rri)j=iqiviδ(rri)dpidt=qie+qic[vi*h]b=Be=E{rotE=1cBtdivB=0divE=4πρrotB=1cEt+4πcjρ=iqiδ(rri)=ρ(E,B)j=iqiviδ(rri)=j(E,B).
j=j(E,B),ρ=ρ(E,B).
{ρ=div(P+rotF1)j=iωP+rot(iωF1+F2).
{PC=P+rotF1F2=c*MC,
{ρ=divPCj=iωPC+crotMC{D=E+4πPCH=B4πMC.
{rotE=iωcB,rotH=iωcDdivB=0,divD=0.
{PLL=P+rotF1F2=0,
{ρ=divPLLj=iωPLL{D=E+4πPLLB=B.
{rotE=iωcB,rotB=iωcDdivB=0,divD=0.
{PT=rotF1F2=c*MC,
{ρ=0j=iωrotF1+crotMC=crotMA{D=E+4πrotF1H=B4πMA.
{rotE=iωcB,rotH=iωcEdivB=0,divE=0.
{B=B+rotT1,E=E+iωcT1H=HiωcT2,D=D+rotT2.
{B=B+rotT1E=E+iωcT1P=Piω4πcT1+rotT2M=M+14πrotT1+iωcT2ρ=ρ+iω4πcdivT1j=j+c4πrotrotT1ω24πcT1
{P(R,ω)=ηsall chargesqsrsQ(R,ω)Qij(R,ω)=η2sall chargesqsri,srj,sM(R,t)=η2csall chargesqs[rs,rst].
{Px(ky,ω)=(px(ky,ω)ikyuxy(ky,ω))Ex(ky,ω)Qxy(ky,ω)=uxy(ky,ω)Ex(ky,ω)Mz(ky,ω)=mx(ky,ω)Ex(ky,ω).
2Ex(y,ω)y2+ω2c2(Ex(y,ω)+4πPx(y,ω))+i4πωcMz(y,ω)y=0ky2=ω2c2(1+4πpx(ky,ω)4πikyuxy(ky,ω))4πkyωcmz(ky,ω).
{ϵx(ky,ω)=1+4πpx(ky,ω)i4πkyuxy(ky,ω)μz(ky,ω)=(1+4πωkycmz(ky,ω))1.
2rk(t)t2+γkrk(t)t+ωk2rk(t)+σkiri(t)=qkmk[Ek,loc(R,t)+(rk(t)t×Bk,loc(R,t))]qkmkEk,loc(R,t).
r1(t)=(x1y10),r2(t)=(x1y10),r3(t)=(x2y10),r4(t)=(x2y10)q1=q4=q,q2=q3=q.
P(R,t)=2ηq(x1+x200)Q(R,ω),Qij(R,t)=ηqy1(0x1x20x1x200000),M(R,t)=iωηqy1c(00x1x2).
{2x1(t)t2+γx1(t)t+ω02x1(t)+σx2(t)=qmEx1,loc2x2(t)t2+γx2(t)t+ω02x2(t)+σx1(t)=qmEx2,loc.
{x1(ω)=qmEx1,loc(iγω+ω2ω02)σEx2,loc(σ2(iγω+ω2ω02)2)x2(ω)=qmEx2,loc(iγω+ω2ω02)σEx1,loc(σ2(iγω+ω2ω02)2).
{x1(ω)+x2(ω)=(Ex1,loc+Ex2,loc)χ+(ω)x1(ω)x2(ω)=(Ex1,locEx2,loc)χ(ω)χ±(ω)=qm1(ω02ω2iγω±σ).
{Ex1,loc(y,ω)=Ex(ω)exp(ikyy1)Ex2,loc(y,ω)=Ex(ω)exp(ikyy1).
j(r,t)=l=0(1)ll!Bik(l)ikδ(r)Bik(l)=j(r,t)rirkd3r.
Csca=πk2l=1m=ll(2l+1)[|aE(l,m)|2+|aM(l,m)|2],
aE(1,±1)=C1[±Bx(1)+iBy(1)]+7C3[±Bxxx(3)+2Bxyy(3)+2Bxzz(3)Byyx(3)Bzzx(3)]i[Byyy(3)+2Byxx(3)+2Byzz(3)Bxxy(3)Bzzy(3)].
j=rot[iωF1].
j=crot[rot[Tδ(r)]].
jtotal=rot[iωTe+crot[Tm]].
F1=icωrot[Tδ(r)],
F1=Te.
χmacro(ω)=χmicro(δk,ω)PDF(δk)dδk.
2Ex(y,ω)y2+ω2c2(Ex(y,ω)+4πPx(y,ω))+i4πωcMz(y,ω)y=0.
{2x1(t)t2+γx1(t)t+ω02x1(t)+σx2(t)+αx13(t)=fexp(iωt)2x2(t)t2+γx2(t)t+ω02x2(t)+σx1(t)+αx23(t)=fexp(iωt+ϕ0).
{dρ˜12dt+ρ˜12(1τ2+i(ωω21))=iαxx˜*N+iμQSA*N+ξρdNdt+(NN0)τ1=iαx(x˜ρ˜12x˜*ρ˜12*)+iμQS(Aρ˜12A*ρ˜12*)22(γiω)dx˜dt+(ω02ω22iωγ)x˜=αρρ˜12*+χA+ξx.
Δωosc=2(γγ2γ+γ2)2ω0P0[n+N2N2(g2/g1)N1].

Metrics