Abstract

Metamaterials (MMs) are artificial media tailoring the propagation of light by a design of a unit cell (meta-atom, MA). There is the evident inclination in favor of numerical methods in the description of the optical properties of MMs at the expense of physical intuition. It is shown that complementary to the numerical ones, qualitative models can provide a deeper understanding of the basic physical processes. The phenomenological approach to the homogenization resulted in three possible representations of Maxwell equations: Casimir, Landau–Lifshitz, and new toroidal ones. The multipole approach has been formulated and extended to the case of coupling between MAs, including random MA positioning. It has been shown that the quadrupole moment inherently introduces nonlinear (second-order) material response. The multipole approach has been applied for the case of the quantum MM to the coupled carbon nanotubes, and for the case of MAs to regular and stochastic properties of the nanolaser (spaser), and monochromatic plane wave propagation in the MM consisting of nanolasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoplasmonics: past, present, and glimpse into future

Mark I. Stockman
Opt. Express 19(22) 22029-22106 (2011)

Homogenization of metamaterials by field averaging (invited paper)

David R. Smith and John B. Pendry
J. Opt. Soc. Am. B 23(3) 391-403 (2006)

Toy model for plasmonic metamaterial resonances coupled to two-level system gain

Martin Wegener, Juan Luis García-Pomar, Costas M. Soukoulis, Nina Meinzer, Matthias Ruther, and Stefan Linden
Opt. Express 16(24) 19785-19798 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (26)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription