Abstract

Highly tunable enhanced lateral displacements in the center of gravity of a totally reflected light beam from a graphene plasmonic metasurface are investigated. Multiple reflections of the incident beam, and the resonance coupling between the incident beam and the surface modes of the graphene metasurface in each reflection, are employed to enhance the Goos–Hänchen and Imbert–Fedorov shifts in the proposed structure. It is shown that spatial Goos–Hänchen and Imbert–Fedorov shifts as high as 1089λ0 and 44.66λ0 (λ0: incident wavelength) are achievable in the proposed structure. The effects of different parameters, including the incident beam waist, temperature, the scattering time, and the chemical potential of the graphene, on the shift values are then studied. Because of the strong light confinement in the surface modes of the graphene metasurface, the dispersion properties of these modes, and, therefore, the coupling strength between the incident beam and these modes, are highly sensitive to the parameters of the reflecting structure and the incident beam itself. The high sensitivity of the coupling strength between the incident beam and the surface modes is then exploited to tune the shift values. It is shown that by introducing a small change of ΔμC=0.02  eV in the chemical potential of the graphene, the spatial Goos–Hänchen and Imbert–Fedorov shift variations of 855λ0 and 31λ0 can be achieved, respectively. The wide range of lateral shift variations along with the relatively small required actuation power support the application of the proposed structure in the realization of optical devices, such as temperature sensors and switches.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces

Simon Grosche, Marco Ornigotti, and Alexander Szameit
Opt. Express 23(23) 30195-30203 (2015)

Goos–Hanchen and Imbert–Fedorov shifts for Hermite–Gauss beams

Chandra Prajapati and D. Ranganathan
J. Opt. Soc. Am. A 29(7) 1377-1382 (2012)

Goos–Hänchen and Imbert–Fedorov shifts at the interface of ordinary dielectric and topological insulator

Fen Liu, Jingping Xu, Ge Song, and Yaping Yang
J. Opt. Soc. Am. B 30(5) 1167-1172 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription