Abstract

The mid-infrared (MIR) emission behavior of Tb3+-doped Ge–As–Ga–Se bulk glasses (500, 1000, and 1500 ppmw Tb3+) and unstructured fiber (500 ppmw Tb3+) is investigated when pumping at 2.013 μm. A broad emission band is observed at 4.3–6.0 μm corresponding to F57F67, with an observed emission lifetime of 12.9 ms at 4.7 μm. The F47 level is depopulated nonradiatively and so it is proposed that Tb3+-doped Ge–As–Ga–Se fiber may operate as a quasi-three-level MIR fiber laser. Underlying glass-impurity vibrational absorption bands are numerically removed to give the true Tb3+ absorption cross section, as required for Judd–Ofelt (J–O) analysis. Radiative transition rates calculated from J–O theory are compared with measured lifetimes. A numerical model of the three-level Tb3+-doped fiber laser is developed for Tb3+ doping of 8.25×1024  ionsm3 (i.e., 500 ppmw) and dependence of laser performance on fiber length, output coupler reflectivity, pump wavelength, signal wavelength, and fiber background loss is calculated. Results indicate the feasibility of an efficient three-level MIR fiber laser operating within 4.5–5.3 μm, pumped at either 2.013 or 2.95 μm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon
Opt. Express 22(18) 21236-21252 (2014)

Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+and Tb3+

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki
Opt. Mater. Express 2(11) 1632-1640 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
    [Crossref]
  2. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
    [Crossref]
  3. J. Schneider, “Fluoride fibre laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
    [Crossref]
  4. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
    [Crossref]
  5. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
    [Crossref]
  6. Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
    [Crossref]
  7. S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
    [Crossref]
  8. A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.
  9. R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. 2, 1339–1343 (1985).
    [Crossref]
  10. Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.
  11. S. Kasap, “Influence of radiation trapping on spectra and measured lifetimes,” in The 7th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA) (IEEE, 2016), paper 16263756.
  12. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
    [Crossref]
  13. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
    [Crossref]
  14. P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers—amplifier basics,” in Erbium-Doped Fiber Amplifiers, J. R. Simpson, ed. (Academic, 1999), pp. 131–152.
  15. R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
    [Crossref]
  16. V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, “Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach,” J. Opt. Soc. Am. B 23, 2588–2596 (2006).
    [Crossref]
  17. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
    [Crossref]
  18. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16, 308–316 (1999).
    [Crossref]
  19. K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay,” J. Opt. Soc. Am. B 21, 2117–2129 (2004).
    [Crossref]
  20. H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
    [Crossref]
  21. M. Pollnau and S. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 315–346.
  22. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  23. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
    [Crossref]
  24. J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40, 3687–3690 (2015).
    [Crossref]
  25. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  26. Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
    [Crossref]

2015 (4)

2014 (1)

2013 (1)

2012 (3)

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (1)

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

2008 (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

2001 (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

1999 (1)

1996 (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

1995 (1)

J. Schneider, “Fluoride fibre laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

1985 (1)

R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. 2, 1339–1343 (1985).
[Crossref]

Adam, J. L.

Aggarwal, I. D.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40, 3687–3690 (2015).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Barney, E.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers—amplifier basics,” in Erbium-Doped Fiber Amplifiers, J. R. Simpson, ed. (Academic, 1999), pp. 131–152.

Benson, T. M.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Beres-Pawlik, E.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

Bernier, M.

Bowman, S. R.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

Brocklesby, W. S.

Burger, A.

Caron, N.

Caspary, R.

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Churbanov, M. F.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

Condon, N. J.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

El-Amraoui, M.

Fang, Y.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Fay, M.

Fortin, V.

Furberg, P.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Furniss, D.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Galagan, B. I.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Ham, B. S.

Hector, J. R.

Hewak, D. W.

Hu, J.

Huber, G.

Isaenko, L. I.

Jackson, S.

M. Pollnau and S. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 315–346.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Jacquier, B.

Jayasuriya, D.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Jurdyc, A. M.

Kasap, S.

S. Kasap, “Influence of radiation trapping on spectra and measured lifetimes,” in The 7th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA) (IEEE, 2016), paper 16263756.

Krupke, W. F.

Kryukova, E. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Lamrini, S.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Le Quang, A. Q.

Leperson, J.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Mandal, K. C.

Markos, C.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Menyuk, C. R.

Messaddeq, Y.

Milos, R. E.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Moneim, N. A.

Nazabal, V.

Neate, N.

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Nitsch, K.

O’Connor, S. P.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

Oladeji, A.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers—amplifier basics,” in Erbium-Doped Fiber Amplifiers, J. R. Simpson, ed. (Academic, 1999), pp. 131–152.

Page, R. H.

Payne, D. N.

Payne, S. A.

Petermann, K.

Phillips, A.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Pollnau, M.

M. Pollnau and S. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 315–346.

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Pyrkov, Y. N.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Quimby, R. S.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

Rademaker, K.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Roy, U. N.

Sakr, H.

Samson, B. N.

Sanghera, J. S.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40, 3687–3690 (2015).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

Schneider, J.

J. Schneider, “Fluoride fibre laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

Scholle, K.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Schweizer, T.

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Seddon, A. B.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Shaw, L. B.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40, 3687–3690 (2015).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

Shiryaev, V. S.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers—amplifier basics,” in Erbium-Doped Fiber Amplifiers, J. R. Simpson, ed. (Academic, 1999), pp. 131–152.

Smetanin, S. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

Sojka, L.

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Sójka, L.

Sujecki, S.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Swanepoel, R.

R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. 2, 1339–1343 (1985).
[Crossref]

Tang, Z.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5, 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22, 21236–21252 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

Tang, Z. Q.

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

Truong, V. G.

Vallée, R.

Wei, C.

Weston, N.

Yelisseyev, A. P.

Zhu, H.

Electron. Lett. (1)

J. Schneider, “Fluoride fibre laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5  μm,” IEEE Photon. Technol. Lett. 20, 123–125 (2008).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

J. Non-Cryst. Solids (1)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy, and Pr ions,” J. Non-Cryst. Solids 326, 301–305 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. 2, 1339–1343 (1985).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Excited state dynamics in Ho:KPb2Cl5,” Opt. Mater. 34, 1603–1609 (2012).
[Crossref]

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson, H. Sakr, Z. Tang, E. Barney, D. Furniss, Ł. Sójka, E. Bereś-Pawlik, K. Scholle, S. Lamrini, and P. Furberg, “Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited),” Opt. Quantum Electron. 47, 1389–1395 (2015).
[Crossref]

Other (5)

A. B. Seddon, D. Furniss, Z. Q. Tang, Ł. Sojka, T. M. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2016), paper 7550709.

M. Pollnau and S. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 315–346.

Y. Fang, L. Sojka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” in Proceedings of 18th International Conference on Transparent Optical Networks (IEEE, 2016), paper 7550618.

S. Kasap, “Influence of radiation trapping on spectra and measured lifetimes,” in The 7th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA) (IEEE, 2016), paper 16263756.

P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers—amplifier basics,” in Erbium-Doped Fiber Amplifiers, J. R. Simpson, ed. (Academic, 1999), pp. 131–152.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Refractive index dispersion of 500 ppmw Tb3+-doped Ge–As–Ga–Se (blue points are data points from the improved Swanepoel method, and the black curve is the Sellmeier fit to the data points).

Fig. 2.
Fig. 2.

(b) Simplified energy-level diagram for Tb3+-doped chalcogenide glass proposed here according to (a) the absorption bands observed for Tb3+ bulk samples using FTIR.

Fig. 3.
Fig. 3.

Experimentally measured absorption spectra of 500, 1000, and 1500 ppmw Tb3+: Ge–As–Ga–Se bulk glasses. The upper transition state is identified in each case.

Fig. 4.
Fig. 4.

(a) Absorption spectrum of the F67F47 transition in 1000 ppmw Tb3+-doped Ge–As–Ga–Se bulk glass. The solid line indicates the measured absorption spectrum of the F67F47 transition, which is comprised of both the Tb3+ absorption and the OH impurity absorption bands. The dashed line represents the true absorption spectrum of the F67F47 transition after calculation to remove the OH contribution. The dotted line represents the calculated contribution of the OH impurity to absorption in the 1000 ppmw Tb3+-doped Ge–As–Ga–Se bulk glass. (b) Absorption spectrum for the F67F57 transition of 1000 ppmw Tb3+-doped Ge–As–Ga–Se bulk glass. The solid line indicates the measured absorption spectrum of the F67F57 transition, which is comprised of both the Tb3+ absorption and the Se–H impurity absorption bands. The dashed line represents the true absorption spectrum of the F67F57 transition after calculation to remove the Se–H contribution. The dotted line represents the calculated contribution of the Se–H impurity to absorption in the 1000 ppmw Tb3+-doped Ge–As–Ga–Se bulk glass.

Fig. 5.
Fig. 5.

Absorption cross section for the F67F57 transition (solid curve, measured but with removal of the contribution of the Se–H impurity band). Emission cross section for the transition F57F67 (dashed curve, calculated using McCumber theory from the corrected absorption cross section). The absorption cross section was calculated for 1000 ppmw Tb3+-doped Ge–As–Ga–Se bulk glass.

Fig. 6.
Fig. 6.

Decay time of the F57 excited level of 1000 ppmw Tb3+-doped chalcogenide selenide glass bulk sample measured at 4.7 μm after QCW (6–8 Hz) laser excitation at 2.013 μm. The best fit to the measured decay profile yields a single exponential decay with τm=12.9  ms.

Fig. 7.
Fig. 7.

Measured MIR emission spectra of 1000 ppmw Tb3+: bulk sample and 500 ppmw Tb3+ glass fiber under excitation at 2.013 μm; spectra are normalized to 1. The emission intensities were corrected for the system response.

Fig. 8.
Fig. 8.

Calculated dependence of the multiphonon relaxation rate on the energy gap for selenide-chalcogenide optical bulk glasses based on Ge–As–Ga–Se calculated based on the data presented in [5,20]. The black line indicates the best fit to calculated intrinsic multiphonon relaxation rates in rare-earth-doped selenide-chalcogenide glasses.

Fig. 9.
Fig. 9.

Calculated material gain ΔN=σemN2σabsN1 as a function of the pump intensity for different pumping wavelengths and for laser emission at 4.7 μm in Tb3+-doped Ge–As–Ga–Se.

Fig. 10.
Fig. 10.

(a) Calculated laser power (λs=4.7  μm) and (b) threshold pump powers as a function of fiber length with different levels of fiber background loss. The results were achieved with an input pump power Pp=1  W and pump wavelength set at 2.95 μm. Results are plotted for a fiber with a background loss of 1  dB/m and 3  dB/m.

Fig. 11.
Fig. 11.

Calculated laser power (λs=4.7  μm) as a function of fiber length for different values of reflectivity of the output coupler. The results were achieved with an input pump power Pp=1  W and a pump wavelength set to 2.95 μm. Results are plotted for a fiber with a background loss of 1  dB/m.

Fig. 12.
Fig. 12.

Calculated output power as a function of lasing wavelength at a pump power of 1 W. The pump wavelength and fiber length are fixed at 2.95 μm and 0.9 m, respectively. Results are plotted for a fiber with a background loss of 1  dB/m and 3  dB/m, respectively.

Fig. 13.
Fig. 13.

Calculated output power and optimum fiber length as a function of pumping wavelength. Results are plotted for a fiber with a background loss of 1  dB/m.

Fig. 14.
Fig. 14.

Calculated output power as a function of input pump power for different fiber background losses. Results were calculated for the signal wavelength and the pump wavelength set to 4.7 μm and 2.95 μm, respectively.

Tables (3)

Tables Icon

Table 1. Calculated Spontaneous Emission Rates [Electronic (AED) and Magnetic (AMD)], Radiative Branching Ratios (βrad), and Radiative Lifetimes (τrad) for Emissions Observed Centered at Wavelength λ

Tables Icon

Table 2. Measured Luminescent Lifetimes (τm), Emission Cross Section (σem), and Product of Merit (σem×τm) of F57F67 in Tb3+-Doped Mid-Infrared Optical Materials

Tables Icon

Table 3. Tb3+-Doped Selenide-Chalcogenide Glass Fiber Laser Modeling Parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n2=1.485+4.942λ2λ20.29232+1.124λ2λ239.232,
σabs=α(λ)N,
σem=λ48πn2cAjjrΔλ,
η=τmτrad,
AMP(T)=B(n(T)+1)pexp(αΔE),
p=ΔEω,
n(T)=1exp(ω/kT)1.
AMP=ATAR,
dN3dt=WpaN1(Wpe+W31+W32)N3,
dN2dt=WsaN1(Wse+W21)N2+W32N3,
N=N1+N2+N3,
Wxy=ΓxσxyλxPxAhc,
Wij=Wijr+Wijmp+Wijimp,
dPp±dz=±Γp(σpeN3σpaN1)Pp±αpPp±,
dPs±dz=±Γs(σ21eN2σ21aN1)Ps±αsPs±,
ΔN=σemN2σabsN1,

Metrics