Abstract

In this paper, we report a metamaterial absorber design that achieves a broad absorption band encompassing the whole long-wavelength infrared (LWIR) region. The structure consists of two parallel metasurfaces buried in an amorphous silicon dielectric layer, where the minimum size for all possible planar details does not go below 1 μm, making the use of standard optical lithography possible for fabrication. The dielectric layer of the structure is placed over a metallic ground plane that inhibits the transmission of incident waves. A substrate underneath the ground plane may also be needed for the purpose of mechanical support. This structure achieves a minimum absorptivity of about 90% in almost the full LWIR band in the case of normal incidence in a polarization-insensitive manner due to the four-fold symmetry of the structural geometry. The absorber also shows reduced sensitivity to off-normal incidence angles, satisfying a minimum absorption level of approximately 80% up to the incidence angle of 45 deg. This broadband metamaterial absorber design is anticipated to find applications in thermal emitters/coolers and in thermal infrared sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

2 February 2017: A correction was made to the author listing.


OSA Recommended Articles
Ultra-broadband infrared metasurface absorber

Wenliang Guo, Yuexia Liu, and Tiancheng Han
Opt. Express 24(18) 20586-20592 (2016)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
    [Crossref]
  2. C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
    [Crossref]
  3. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  4. X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
    [Crossref]
  5. D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
    [Crossref]
  6. A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
    [Crossref]
  7. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
    [Crossref]
  8. J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
    [Crossref]
  9. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
    [Crossref]
  10. J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
    [Crossref]
  11. P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
    [Crossref]
  12. W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
    [Crossref]
  13. B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
    [Crossref]
  14. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
    [Crossref]
  15. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  16. X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref]
  17. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [Crossref]
  18. Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
    [Crossref]
  19. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
    [Crossref]
  20. K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  21. X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
  22. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
    [Crossref]
  23. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
    [Crossref]
  24. B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
    [Crossref]
  25. H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
    [Crossref]
  26. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
    [Crossref]
  27. J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
    [Crossref]
  28. Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  29. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
    [Crossref]
  30. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
    [Crossref]
  31. C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
  32. Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
  33. C. Valagiannopoulos and S. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62, 5089–5098 (2014).
    [Crossref]
  34. I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
    [Crossref]
  35. C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
    [Crossref]
  36. C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
    [Crossref]
  37. www.cst.com .
  38. A. Rakić, A. Djurišić, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  40. J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
    [Crossref]
  41. K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
    [Crossref]
  42. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
    [Crossref]

2016 (3)

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

2015 (11)

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

2014 (6)

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
[Crossref]

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

C. Valagiannopoulos and S. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62, 5089–5098 (2014).
[Crossref]

2013 (5)

I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
[Crossref]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

2012 (5)

J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

2011 (4)

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

2010 (3)

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

2008 (1)

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

2006 (1)

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

1998 (1)

Adomanis, B.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Afsar, M.

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Aho, T.

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

Atwater, H.

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Aydin, K.

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Benisty, H.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Bossard, J.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Boutami, S.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Briggs, R.

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Bringuier, J.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Chen, J.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Chen, L.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Choi, D.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Choi, J.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Coutrot, A.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Deparis, O.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Djurišic, A.

Elazar, J.

Fan, K.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Fang, N.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ferry, V.

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Fu, Y.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

Fung, K.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Gawarikar, A.

J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
[Crossref]

Greffet, J.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Gu, M.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Guan, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Guina, M.

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

Guo, L.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Guo, W.

Han, T.

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Henrard, L.

Hong, G.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

Hong, J.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Hossain, M.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Hugonin, J.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Iguchi, F.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

Jeong, J.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Jia, B.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Jiang, Z.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

Jokerst, N.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

Jung, J.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Kaplan, A.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

Kohiyama, A.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

Koirala, M.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Korolev, K.

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Landy, N.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lard, M.

Lee, B.

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

Lee, E.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Lee, J.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Lefebvre, A.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Li, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Liang, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Lin, L.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Liu, B.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Liu, F.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Liu, L.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Liu, X.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Liu, Y.

Lobet, M.

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

Lu, Z.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Luo, C.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

Ma, H.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ma, W.

Majewski, M.

Marquier, F.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Maslovski, S.

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

Mayer, T.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Melnikov, L.

I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

Mitchell, A.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Nefedov, I.

I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Neikirk, D.

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

Niemi, T.

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

Padilla, W.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Phelan, P.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Prasad Sivan, V.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).

Rakic, A.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Rosengarten, G.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Sajuyigbe, S.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarrazin, M.

Shea, R.

J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
[Crossref]

Shimizu, M.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Simovski, C.

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).

Singh, P.

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Smith, D.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sonkusale, S.

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Starr, A.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Starr, T.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Sui, C.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Sun, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Talghader, J.

J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
[Crossref]

Tang, C.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Tao, H.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Toor, F.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Tretyakov, S.

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

C. Valagiannopoulos and S. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62, 5089–5098 (2014).
[Crossref]

Tukiainen, A.

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

Turhan-Sayan, G.

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

Tyler, T.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

Üstün, K.

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

Valagiannopoulos, C.

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

C. Valagiannopoulos and S. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62, 5089–5098 (2014).
[Crossref]

Valaginnopoulos, C.

I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Vehmas, J.

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

Wang, H.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, L.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, Q.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Wang, T.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Wang, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Wang, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Watts, C.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

Wen, Y.

Werner, D.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

West, K.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Wu, T.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Xiong, H.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Xu, J.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Yan, Z.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

Yu, W.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Yu, X.

Yugami, H.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

Yun, S.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Zhai, P.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

Zhang, X.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Zhang, Z.

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

Zhao, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

Zhong, L.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Zhou, J.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

Zhu, M.

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

ACS Nano (2)

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

ACS Photon. (1)

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Adv. Mater. (1)

C. Watts, X. Liu, and W. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

Adv. Opt. Mater. (2)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 041105 (2015).
[Crossref]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102, 091902 (2013).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

P. Singh, K. Korolev, M. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104, 022903 (2014).
[Crossref]

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

IEEE Photon. J. (1)

J. Jung, J. Lee, D. Choi, J. Choi, J. Jeong, E. Lee, and D. Neikirk, “Wavelength-selective infrared metasurface absorber for multispectral thermal detection,” IEEE Photon. J. 7, 1–10 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

C. Valagiannopoulos and S. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antennas Propag. 62, 5089–5098 (2014).
[Crossref]

J. Appl. Phys. (4)

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118, 133102 (2015).
[Crossref]

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

J. Opt. (1)

I. Nefedov, C. Valaginnopoulos, and L. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Laser Photon. Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Light Sci. Appl. (1)

J. Talghader, A. Gawarikar, and R. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1, e24 (2012).
[Crossref]

Nano Lett. (2)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. Ferry, R. Briggs, and H. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. Appl. (2)

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).

D. Costantini, A. Lefebvre, A. Coutrot, I. Moldovan-Doyen, J. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Phys. Rev. B (2)

C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, and C. Simovski, “Perfect magnetic mirror and simple perfect absorber in the visible spectrum,” Phys. Rev. B 91, 115305 (2015).
[Crossref]

C. Valagiannopoulos, J. Vehmas, C. Simovski, S. Tretyakov, and S. Maslovski, “Electromagnetic energy sink,” Phys. Rev. B 92, 245402 (2015).
[Crossref]

Phys. Rev. Lett. (3)

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

RSC Adv. (1)

C. Tang, Z. Yan, Q. Wang, J. Chen, M. Zhu, B. Liu, F. Liu, and C. Sui, “Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers,” RSC Adv. 5, 81866–81874 (2015).
[Crossref]

Sci. Rep. (1)

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6, 21431 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (2)

www.cst.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Top view (a) and side view (b) of a unit cell of the ideal structure. The original absorption spectrum and absorption spectra for different cases with and without blending (c). The perspective view of the metamaterial array is given in the inset.
Fig. 2.
Fig. 2. Sensitivity of the absorptance spectra to variations in the design parameters: h Di (a), s 1 (b), s 2 (c), h (d), R (e), and p (f). In each plot, only one parameter is changed at a time, while keeping the others fixed at their optimal design values. Absorptance values averaged over the wavelength band 8–12 μm obtained for 2D scan of the design parameters: s 2 and s 1 (g), R and p (h), and h Di and h (i).
Fig. 3.
Fig. 3. The magnitude of the complex electric field distribution (in the z -direction) in the x = 0 plane (middle plane) for wavelengths of approximately 8.4 μm (a), 9.9 μm (b), and 11.6 μm (c). The magnitude of the complex magnetic field distribution (in the x -direction) in the x = 0 plane (middle plane) for wavelengths of 8.4 μm (d), 9.9 μm (e), and 11.6 μm (f).
Fig. 4.
Fig. 4. Decomposition of the overall absorption spectrum of the proposed absorber into its structural components.
Fig. 5.
Fig. 5. Absorptivity spectra for different incidence angles, for s-polarized (a) and p-polarized (b) excitation.

Tables (1)

Tables Icon

Table 1. Comparison of Numerical Simulations of Various Designs According to Operating Band, Thickness, and Number of Layers to Be Deposited on the Substrate

Metrics