Abstract

It is interesting to try to understand the rate-limiting processes in scientific and technical research and applications. In this invited paper, I use data about the introduction of the maser, the laser, and the optical comb to see if unnecessary delays can be identified. The general result is that it all depends—on circumstances and breadth of awareness, and luck!

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical Masers

O. S. Heavens
Appl. Opt. 1(S1) 1-23 (1962)

History of quantum electronics at the Moscow Lebedev and General Physics Institutes: Nikolaj Basov and Alexander Prokhorov

N. V. Karlov, O. N. Krokhin, and S. G. Lukishova
Appl. Opt. 49(25) F32-F46 (2010)

The evolving optical frequency comb [Invited]

Scott A. Diddams
J. Opt. Soc. Am. B 27(11) B51-B62 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Townes, How the Laser Happened: Adventures of a Scientist (Oxford University, 1999), p. 208.
  2. E. B. Hook, Prematurity in Scientific Discovery: Resistance and Neglect (University of California, 2002), p. 54.
  3. A catalog of remaining available Soviet-era tubes, http://www.insight-product.com/submmbwo3.htm .
  4. A wonderful background on microwave power systems is provided in https://steveblank.com/secret-history/ . Arising from these ideas, we now have high-power 95 GHz transmitters designed to control human access to an area, in a non-lethal manner, the so-called active denial systems, with ∼1  W/cm2 delivered to nearly 1 km distance.
  5. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill/Dover, 2012).
  6. N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
    [Crossref]
  7. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [Crossref]
  8. T. W. Maiman, The Laser Odyssey, 1st ed. (Laser Pr, 2000).
  9. Private demonstration for the author, at Stanford University, by Professor Schawlow, late spring 1984.
  10. A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
    [Crossref]
  11. J. Hecht, “History of gas lasers, part 1—continuous wave gas lasers,” Opt. Photon. News 21(1), 16–23 (2010).
    [Crossref]
  12. J. L. Hall, “Optical frequency measurement: 40 years of technology revolutions,” IEEE J. Sel. Top. Quantum Electron. 6, 1136–1144 (2000).
    [Crossref]
  13. R. W. Hellwarth and F. J. McClung, “Giant pulsations from ruby,” J. Appl. Phys. 33, 838–841 (1962).
  14. J. A. Giordmaine, “Wave mixing of light beams in crystals,” Phys. Rev. Lett. 8, 19–20 (1962).
    [Crossref]
  15. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [Crossref]
  16. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
    [Crossref]
  17. G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
    [Crossref]
  18. E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
    [Crossref]
  19. H. Takuma and D. A. Jennings, “Coherent Raman effect in the off-axis resonator,” Appl. Phys. Lett. 4, 185–186 (1964).
    [Crossref]
  20. NonlinearOpt_MIT(Garmire)—Charles Hard Townes [PPT], http://townes.ssl.berkeley.edu/home/2015-symposium/symposium-presentations/ .
  21. J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
    [Crossref]
  22. E. J. Robinson and S. Geltman, “Single- and double-quantum photodetachment of negative ions,” Phys. Rev. 153, 4–8 (1967).
    [Crossref]
  23. A. L’Huillier and G. Wendin, “Two-photon electron detachment of negative iodine,” J. Phys. B 21, L247–L253 (1988).
    [Crossref]
  24. https://lasers.llnl.gov/about/what-is-nif? .
  25. http://laserfest.org/lasers/pioneers/sibbett.cfm .
  26. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [Crossref]
  27. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  28. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  29. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [Crossref]
  30. This “frequency chain” concept was advanced early by Ali Javan, the HeNe laser’s inventor [see L. O. Hocker et al., Appl. Phys. Lett. 10, 147 (1967)]. After the ∼3 years delay in journal translations, we in the West became aware of the equivalent advances being made in Novosibirsk by the group of V. P. Chebotayev [see S. N. Bagaev et al., Laser Phys. 4, 293–296 (1994)]. In particular, note here the early discussion of a unified time-frequency outlook.
  31. D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, “Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser,” Opt. Lett. 8, 136–138 (1983).
    [Crossref]
  32. V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
    [Crossref]
  33. http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html .
  34. J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
    [Crossref]
  35. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
    [Crossref]
  36. A photo of the NBS frequency measurement system circa 1972 is in the NIST 100-year anniversary issue of Optics & Photonics News, February 2001, p. 47.
  37. S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24, 1747–1749 (1999).
    [Crossref]
  38. T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  39. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  40. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
    [Crossref]
  41. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
    [Crossref]
  42. J. Gertner, The Idea Factory: Bell Labs and the Great Age of American Innovation (Penguin, 2012).
  43. J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
    [Crossref]

2016 (1)

2011 (2)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

2010 (1)

J. Hecht, “History of gas lasers, part 1—continuous wave gas lasers,” Opt. Photon. News 21(1), 16–23 (2010).
[Crossref]

2004 (1)

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

2003 (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

2001 (1)

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

J. L. Hall, “Optical frequency measurement: 40 years of technology revolutions,” IEEE J. Sel. Top. Quantum Electron. 6, 1136–1144 (2000).
[Crossref]

1999 (1)

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

1988 (1)

A. L’Huillier and G. Wendin, “Two-photon electron detachment of negative iodine,” J. Phys. B 21, L247–L253 (1988).
[Crossref]

1984 (1)

1983 (1)

1978 (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
[Crossref]

1976 (1)

V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
[Crossref]

1967 (1)

E. J. Robinson and S. Geltman, “Single- and double-quantum photodetachment of negative ions,” Phys. Rev. 153, 4–8 (1967).
[Crossref]

1965 (1)

J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
[Crossref]

1964 (1)

H. Takuma and D. A. Jennings, “Coherent Raman effect in the off-axis resonator,” Appl. Phys. Lett. 4, 185–186 (1964).
[Crossref]

1963 (1)

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

1962 (5)

R. W. Hellwarth and F. J. McClung, “Giant pulsations from ruby,” J. Appl. Phys. 33, 838–841 (1962).

J. A. Giordmaine, “Wave mixing of light beams in crystals,” Phys. Rev. Lett. 8, 19–20 (1962).
[Crossref]

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[Crossref]

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

1961 (1)

A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

1948 (1)

N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
[Crossref]

Bartels, A.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Bennett, W. R.

A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
[Crossref]

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Bloembergen, N.

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[Crossref]

N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
[Crossref]

Branscomb, L. M.

J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
[Crossref]

Chebotayev, V. P.

V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
[Crossref]

Cundiff, S. T.

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24, 1747–1749 (1999).
[Crossref]

Drullinger, R. E.

Eckhardt, G.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Eckstein, J. N.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
[Crossref]

Evenson, K. M.

Ferguson, A. I.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
[Crossref]

Fork, R. L.

Garmire, E.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Geltman, S.

E. J. Robinson and S. Geltman, “Single- and double-quantum photodetachment of negative ions,” Phys. Rev. 153, 4–8 (1967).
[Crossref]

Gertner, J.

J. Gertner, The Idea Factory: Bell Labs and the Great Age of American Innovation (Penguin, 2012).

Giordmaine, J. A.

J. A. Giordmaine, “Wave mixing of light beams in crystals,” Phys. Rev. Lett. 8, 19–20 (1962).
[Crossref]

Gordon, J. P.

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Hall, J. L.

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. L. Hall, “Optical frequency measurement: 40 years of technology revolutions,” IEEE J. Sel. Top. Quantum Electron. 6, 1136–1144 (2000).
[Crossref]

S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24, 1747–1749 (1999).
[Crossref]

D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, “Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser,” Opt. Lett. 8, 136–138 (1983).
[Crossref]

J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
[Crossref]

Hänsch, T. W.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
[Crossref]

Hecht, J.

J. Hecht, “History of gas lasers, part 1—continuous wave gas lasers,” Opt. Photon. News 21(1), 16–23 (2010).
[Crossref]

Hellwarth, R. W.

R. W. Hellwarth and F. J. McClung, “Giant pulsations from ruby,” J. Appl. Phys. 33, 838–841 (1962).

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Herriott, D.

A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
[Crossref]

Hollberg, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Holzwart, R.

T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Hook, E. B.

E. B. Hook, Prematurity in Scientific Discovery: Resistance and Neglect (University of California, 2002), p. 54.

Javan, A.

A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
[Crossref]

Jennings, D. A.

Jones, D. J.

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Klementyev, V. M.

V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
[Crossref]

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

L’Huillier, A.

A. L’Huillier and G. Wendin, “Two-photon electron detachment of negative iodine,” J. Phys. B 21, L247–L253 (1988).
[Crossref]

Layer, H. P.

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24, 1747–1749 (1999).
[Crossref]

Maiman, T. W.

T. W. Maiman, The Laser Odyssey, 1st ed. (Laser Pr, 2000).

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

Martinez, O. E.

Matyugin, Y. A.

V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
[Crossref]

McClung, F. J.

R. W. Hellwarth and F. J. McClung, “Giant pulsations from ruby,” J. Appl. Phys. 33, 838–841 (1962).

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Pandarese, F.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

Pershan, P. S.

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[Crossref]

Petersen, F. R.

Pollock, C. R.

Pound, R. V.

N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
[Crossref]

Purcell, E. M.

N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Robinson, E. J.

E. J. Robinson and S. Geltman, “Single- and double-quantum photodetachment of negative ions,” Phys. Rev. 153, 4–8 (1967).
[Crossref]

J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill/Dover, 2012).

Schwarz, S. E.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stentz, A. J.

Takuma, H.

H. Takuma and D. A. Jennings, “Coherent Raman effect in the off-axis resonator,” Appl. Phys. Lett. 4, 185–186 (1964).
[Crossref]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

Townes, C. H.

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

C. H. Townes, How the Laser Happened: Adventures of a Scientist (Oxford University, 1999), p. 208.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill/Dover, 2012).

Vahala, K.

Weiner, D.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Wells, J. S.

Wendin, G.

A. L’Huillier and G. Wendin, “Two-photon electron detachment of negative iodine,” J. Phys. B 21, L247–L253 (1988).
[Crossref]

Wilpers, G.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Woodbury, E. J.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Yang, K. Y.

Yang, Q.-F.

Ye, J.

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24, 1747–1749 (1999).
[Crossref]

Yi, X.

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

Appl. Phys. (1)

V. P. Chebotayev, V. M. Klementyev, and Y. A. Matyugin, “Frequency-synthesis of 633 nm radiation by mixing 3 IR frequencies in a gas,” Appl. Phys. 11, 163–165 (1976).
[Crossref]

Appl. Phys. Lett. (1)

H. Takuma and D. A. Jennings, “Coherent Raman effect in the off-axis resonator,” Appl. Phys. Lett. 4, 185–186 (1964).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “The four laser ultras: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. L. Hall, “Optical frequency measurement: 40 years of technology revolutions,” IEEE J. Sel. Top. Quantum Electron. 6, 1136–1144 (2000).
[Crossref]

J. Appl. Phys. (1)

R. W. Hellwarth and F. J. McClung, “Giant pulsations from ruby,” J. Appl. Phys. 33, 838–841 (1962).

J. Phys. B (1)

A. L’Huillier and G. Wendin, “Two-photon electron detachment of negative iodine,” J. Phys. B 21, L247–L253 (1988).
[Crossref]

Opt. Lett. (5)

Opt. Photon. News (1)

J. Hecht, “History of gas lasers, part 1—continuous wave gas lasers,” Opt. Photon. News 21(1), 16–23 (2010).
[Crossref]

Phys Rev. Lett. (1)

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys Rev. Lett. 9, 455–457 (1962).
[Crossref]

Phys. Rev. (4)

N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73, 679–712 (1948).
[Crossref]

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

E. J. Robinson and S. Geltman, “Single- and double-quantum photodetachment of negative ions,” Phys. Rev. 153, 4–8 (1967).
[Crossref]

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[Crossref]

Phys. Rev. Lett. (7)

J. L. Hall, E. J. Robinson, and L. M. Branscomb, “Laser double-quantum photodetachment of I-,” Phys. Rev. Lett. 14, 1013–1016 (1965).
[Crossref]

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High resolution spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847–850 (1978).
[Crossref]

E. Garmire, F. Pandarese, and C. H. Townes, “Coherently driven molecular vibrations and light modulation,” Phys. Rev. Lett. 11, 160–163 (1963).
[Crossref]

A. Javan, D. Herriott, and W. R. Bennett, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106–110 (1961).
[Crossref]

J. A. Giordmaine, “Wave mixing of light beams in crystals,” Phys. Rev. Lett. 8, 19–20 (1962).
[Crossref]

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave-spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Science (4)

T. J. Kippenberg, R. Holzwart, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 1E-19 level,” Science 303, 1843–1845 (2004).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Other (14)

https://lasers.llnl.gov/about/what-is-nif? .

http://laserfest.org/lasers/pioneers/sibbett.cfm .

NonlinearOpt_MIT(Garmire)—Charles Hard Townes [PPT], http://townes.ssl.berkeley.edu/home/2015-symposium/symposium-presentations/ .

A photo of the NBS frequency measurement system circa 1972 is in the NIST 100-year anniversary issue of Optics & Photonics News, February 2001, p. 47.

http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html .

This “frequency chain” concept was advanced early by Ali Javan, the HeNe laser’s inventor [see L. O. Hocker et al., Appl. Phys. Lett. 10, 147 (1967)]. After the ∼3 years delay in journal translations, we in the West became aware of the equivalent advances being made in Novosibirsk by the group of V. P. Chebotayev [see S. N. Bagaev et al., Laser Phys. 4, 293–296 (1994)]. In particular, note here the early discussion of a unified time-frequency outlook.

T. W. Maiman, The Laser Odyssey, 1st ed. (Laser Pr, 2000).

Private demonstration for the author, at Stanford University, by Professor Schawlow, late spring 1984.

C. H. Townes, How the Laser Happened: Adventures of a Scientist (Oxford University, 1999), p. 208.

E. B. Hook, Prematurity in Scientific Discovery: Resistance and Neglect (University of California, 2002), p. 54.

A catalog of remaining available Soviet-era tubes, http://www.insight-product.com/submmbwo3.htm .

A wonderful background on microwave power systems is provided in https://steveblank.com/secret-history/ . Arising from these ideas, we now have high-power 95 GHz transmitters designed to control human access to an area, in a non-lethal manner, the so-called active denial systems, with ∼1  W/cm2 delivered to nearly 1 km distance.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill/Dover, 2012).

J. Gertner, The Idea Factory: Bell Labs and the Great Age of American Innovation (Penguin, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Anti-Stokes rings from ruby laser scattering in nitrobenzene. The angular sharpness of the emitted rings shows that no small filaments were being formed by our nearly single-mode pulses. Later we recorded anti-Stokes lines beyond the doubled ruby’s frequency. These unpublished experiments were performed in collaboration with H. Takuma, who at that time was also a young scientist affiliated with NBS.

Metrics