Abstract

In this contribution, we numerically study the tip enhancement of localized surface plasmons in periodic arrays of gold nanowires with triangular cross section under different illumination configurations. We found that the plasmonic resonance in a single nanowire is excited with a transverse magnetic (TM) plane wave impinging from the substrate at the critical angle, whereas grazing angles are required for the excitation of resonant propagating modes in periodic arrays of triangular-shaped nanowires. Moreover, we found that resonant plasmonic quasi-Bloch modes are efficiently excited with the fundamental TM mode of a dielectric waveguide placed underneath the array. The integrated plasmonic structure allows a strong enhancement of the electromagnetic field at the tip of the nanowires, hence its potential application in the development of new nanophotonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires

Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, and Sylvain Blaize
Photon. Res. 2(1) 24-30 (2014)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance

Donghyun Kim and Soon Joon Yoon
Appl. Opt. 46(6) 872-880 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  2. K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).
  3. S. Tuccio, L. Razzari, A. Alabastri, A. Toma, C. Liberale, F. D. Angelis, P. Candeloro, G. Das, A. Giugni, E. D. Fabrizio, and R. P. Zaccaria, “Direct determination of the resonance properties of metallic conical nanoantennas,” Opt. Lett. 39, 571–573 (2014).
    [Crossref]
  4. S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
    [Crossref]
  5. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
    [Crossref]
  6. C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
    [Crossref]
  7. A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
    [Crossref]
  8. C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
    [Crossref]
  9. S. Rao, M. J. Huttunen, J. M. Kontio, J. Makitalo, M.-R. Viljanen, J. Simonen, M. Kauranen, and D. Petrov, “Tip-enhanced Raman scattering from bridged nanocones,” Opt. Express 18, 23790–23795 (2010).
    [Crossref]
  10. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012).
    [Crossref]
  11. G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21, 21918–21923 (2013).
    [Crossref]
  12. V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
    [Crossref]
  13. J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
    [Crossref]
  14. J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with 10  nm tips for enhanced optical interactions,” Opt. Lett. 34, 1979–1981 (2009).
    [Crossref]
  15. A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
    [Crossref]
  16. O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
    [Crossref]
  17. H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
    [Crossref]
  18. M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
    [Crossref]
  19. E. D. Palik, Handbook of Optical Constants of Solids, 4th ed. (Academic, 1985).
  20. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  21. R. M. A. Azzam, “Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection,” Appl. Opt. 50, 6272–6276 (2011).
    [Crossref]
  22. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  23. L. Józefowski, J. Fiutowski, T. Kawalec, and H.-G. Rubahn, “Direct measurement of the evanescent-wave polarization state,” J. Opt. Soc. Am. B 24, 624–628 (2007).
    [Crossref]
  24. R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
    [Crossref]
  25. D. Maystre, Theory of Wood’s Anomalies, Springer Series in Optical Sciences (Springer-Verlag, 2012), Vol. 167.
  26. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [Crossref]
  27. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
    [Crossref]
  28. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
    [Crossref]
  29. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  30. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [Crossref]
  31. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  32. G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).
    [Crossref]
  33. N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, “Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings,” J. Opt. Soc. Am. A 24, 3781–3788 (2007).
    [Crossref]
  34. D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29, 367–373 (2012).
    [Crossref]

2015 (2)

C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
[Crossref]

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

2014 (4)

V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
[Crossref]

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

S. Tuccio, L. Razzari, A. Alabastri, A. Toma, C. Liberale, F. D. Angelis, P. Candeloro, G. Das, A. Giugni, E. D. Fabrizio, and R. P. Zaccaria, “Direct determination of the resonance properties of metallic conical nanoantennas,” Opt. Lett. 39, 571–573 (2014).
[Crossref]

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

2013 (5)

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[Crossref]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21, 21918–21923 (2013).
[Crossref]

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

2012 (3)

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012).
[Crossref]

D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29, 367–373 (2012).
[Crossref]

2011 (1)

2010 (2)

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

S. Rao, M. J. Huttunen, J. M. Kontio, J. Makitalo, M.-R. Viljanen, J. Simonen, M. Kauranen, and D. Petrov, “Tip-enhanced Raman scattering from bridged nanocones,” Opt. Express 18, 23790–23795 (2010).
[Crossref]

2009 (1)

2007 (3)

2005 (1)

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

2002 (1)

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).
[Crossref]

2000 (1)

1997 (1)

1996 (1)

1981 (1)

1941 (1)

Akjouj, A.

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Alabastri, A.

Andreani, L. C.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[Crossref]

Angelis, F. D.

Apuzzo, A.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Azzam, R. M. A.

Barbastathis, G.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Batchelor, D.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Bautista, G.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21, 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012).
[Crossref]

Beaud, P.

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Blaize, S.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Boukherroub, R.

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Broch, K.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Bucci, D.

Buck, M. R.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Cabrini, S.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Candeloro, P.

Chen, X.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Choi, H. J.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Christiansen, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Cohen, R. E.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

D’Agostino, S.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[Crossref]

Das, G.

Della Sala, F.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[Crossref]

Dhawan, A.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Dmitruk, N. L.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Du, Y.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Dutschke, A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Fabrizio, E. D.

Fano, U.

Feurer, T.

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Fevrier, M.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Fiutowski, J.

Fleischer, M.

C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
[Crossref]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Fulmes, J.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Gaylord, T. K.

Giugni, A.

Gollmer, D. A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Götzinger, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Granet, G.

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).
[Crossref]

Gusak, V.

V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
[Crossref]

Hägglund, C.

V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Hoffmann, B.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Hollingsworth, J. A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Horrer, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Hugonin, J. P.

Husu, H.

Huttunen, M. J.

Józefowski, L.

Kasemo, B.

V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
[Crossref]

Kauranen, M.

Kawalec, T.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kern, D. P.

C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Kim, J.-G.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Kirk, E.

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Kontio, J. M.

Korovin, A. V.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Lalanne, P.

Leonard, D. N.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Lévêque, G.

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Li, L.

Liberale, C.

Liu, H.-W.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Lyndin, N. M.

Lytvyn, O. S.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Makitalo, J.

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012).
[Crossref]

Mamykin, S. V.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Martin, B.

Matsuzaki, K.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Maystre, D.

D. Maystre, Theory of Wood’s Anomalies, Springer Series in Optical Sciences (Springer-Verlag, 2012), Vol. 167.

McKinley, G. H.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Meixner, A. J.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Misra, V.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Moharam, M. G.

Morand, A.

Morris, G. M.

Mustonen, A.

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Mynko, V. I.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, 4th ed. (Academic, 1985).

Park, K.-C.

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

Parriaux, O.

Pessa, M.

Petrov, D.

Plumey, J.-P.

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).
[Crossref]

Rao, S.

Razzari, L.

Rogalski, J.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Rubahn, H.-G.

Saison-Francioso, O.

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Salas-Montiel, R.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Sandoghdar, V.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Schäfer, C.

C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Schreiber, F.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Schuck, P. J.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Silberstein, E.

Simonen, J.

Sosnova, M. V.

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

Szunerits, S.

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Tellez-Limon, R.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Tishchenko, A. V.

Toma, A.

Tommila, J.

Tsujino, S.

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Tuccio, S.

Vassant, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

Viljanen, M.-R.

Vo-Dinh, T.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Wang, H.-N.

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Weber-Bargioni, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Zaccaria, R. P.

Zhang, D.

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. V. Sosnova, N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, “Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications,” Appl. Phys. B 99, 493–497 (2010).
[Crossref]

J. Opt. A (1)

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (3)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

V. Gusak, B. Kasemo, and C. Hägglund, “High aspect ratio plasmonic nanocones for enhanced light absorption in ultrathin amorphous silicon films,” J. Phys. Chem. C 118, 22840–22846 (2014).
[Crossref]

O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits, and A. Akjouj, “Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study,” J. Phys. Chem. C 119, 28551–28559 (2015).
[Crossref]

Lab Chip (1)

C. Schäfer, D. P. Kern, and M. Fleischer, “Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis,” Lab Chip 15, 1066–1071 (2015).
[Crossref]

Nano Lett. (1)

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012).
[Crossref]

Nanoscale (1)

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3d conical nanoantennas,” Nanoscale 5, 7861–7866 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Photonics Res. (1)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Res. 2, 24–30 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15, 6008–6015 (2013).
[Crossref]

Phys. Rev. B (1)

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[Crossref]

Sci. Rep. (1)

A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, “Efficient light coupling for optically excited high-density metallic nanotip arrays,” Sci. Rep. 2, 915 (2012).
[Crossref]

Small (2)

J.-G. Kim, H. J. Choi, K.-C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10, 2487–2494 (2014).
[Crossref]

A. Horrer, C. Schäfer, K. Broch, D. A. Gollmer, J. Rogalski, J. Fulmes, D. Zhang, A. J. Meixner, F. Schreiber, D. P. Kern, and M. Fleischer, “Parallel fabrication of plasmonic nanocone sensing arrays,” Small 9, 3987–3992 (2013).
[Crossref]

Other (5)

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” arXiv:1608.07843 (2016).

D. Maystre, Theory of Wood’s Anomalies, Springer Series in Optical Sciences (Springer-Verlag, 2012), Vol. 167.

E. D. Palik, Handbook of Optical Constants of Solids, 4th ed. (Academic, 1985).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic representation of the periodic array of gold nanowires with triangular cross section of width w=72  nm, height h=144  nm, and period Λ, on top of a silica substrate. The structure is invariant along the y direction. The incident TM-polarized plane wave forms an angle θi relative to the normal. The resulting transmission and reflection are the sum of all diffracted modes, Eout+ and Eout, in the reciprocal Fourier domain. (b) Schematic representation of the same gold nanowires integrated on top of a dielectric waveguide inside the glass substrate to be analyzed in Section 3. (c) Schematic of a three-dimensional integrated array of gold nanocones placed on top of a dielectric waveguide to be presented in Section 4.

Fig. 2.
Fig. 2.

Illumination of an array of gold nanowires with period Λ=6  μm placed on top of a silica substrate with a TM plane wave from the substrate. (a) The absorption as a function of the incidence angle and wavelength is maximum around λ=540  nm and θi=43° (marker R0), near to the critical angle (θc). (b),(c) Energy density maps and electric field line distribution under illumination at λ=540  nm and at θ=0° and θc=41.8°, respectively. The near-field maps were normalized to the maximum intensity of resonance at θc and used the same scale bar for comparison only.

Fig. 3.
Fig. 3.

Normalized absorption efficiency spectra for an infinite periodic array of gold triangular-shaped nanowires illuminated from the substrate with a TM-polarized plane wave. (a) Spectra as a function of the angle of incidence θi and period fixed to Λ=200  nm. A LSP resonance is excited around λ=530  nm, near to the value observed for the array of long period. This resonance is enhanced along the first Bragg order (blue curve) between markers R0 and R1 and at the critical angle (R0). A second resonance is excited at grazing angles with maximum absorption around λ=800  nm (R2). Spectra as a function of the period Λ for illumination at (b) normal incidence (θi=0°), (c) at the critical angle (θi=41.8°), and (d) θi=82°. For the latter, the two LSPR [Fig. 3(a)] reappear in the first Brillouin zone (sub-diffractive regime). Close to the edge of the first Brillouin zone is observed a Wood anomaly effect, characterized by an enhancement of the absorption along with a strong redshift of the resonant wavelength. In the second Brillouin zone, only a diffractive dipolar transverse mode (R3) is observed. The blue and red curves represent the wavelength cutoff conditions of the subsequent Bragg orders propagating into the silica substrate and air superstrate, respectively [Eq. (2)].

Fig. 4.
Fig. 4.

Energy density maps and electric field line distribution for the chain of nanowires at R1, R2, and R3 illuminated from the substrate with a TM-polarized plane wave at a grazing angle θi=82°. (a) At R1 (λ=600  nm and Λ=200  nm) the optical field is enhanced at the lower apexes of the nanowires due to the main excitation of the dipolar longitudinal mode. (b) At R2 (λ=800  nm and Λ=200  nm) the field is strongly enhanced at the top apexes of the nanowires due to a dipolar transverse mode coupling. (c) At R3 (λ=660  nm and Λ=400  nm) the dipolar transverse coupling is weaker but still observable. The near-field maps were normalized to the maximum intensity of resonance R2 and used the same scale bar for comparison only.

Fig. 5.
Fig. 5.

Schematic representation of (a) an infinite periodic array of gold nanowires with triangular cross section (w=72  nm, h=144  nm, and Λ=200  nm) on top of a glass substrate and (b) of an optical planar waveguide (dielectric core of thickness t1=200  nm and refractive index nwg=2.0 immersed in a silica substrate nsub=1.5). The core was separated from the silica–air interface a distance t2=30  nm. (c) The dispersion curves show the dipolar transverse mode (DTM) band of the nanowires crossing the fundamental TM0 mode band of the dielectric waveguide around λ=747  nm (kx=0.86π/Λ). An efficient mode coupling is thus expected at this crossing point for an array placed on top of the waveguide. The dipolar longitudinal modes (DLMs) are radiated modes as they lay above the substrate light-line. Distribution of (d) the magnetic and (e) the electric fields of the dipolar longitudinal eigenmode (DLM) at R1. Distribution of (f) the magnetic and (g) the electric fields of the dipolar transversal eigenmode (DTM) at R2.

Fig. 6.
Fig. 6.

(a) Representation of a periodic array of 5 Au nanowires on a dielectric waveguide. (b) Dispersion curves of an infinite array of Au nanowires on a dielectric waveguide. The coupled waveguides support an even (eDTM) and an odd (oDTM) dipolar transverse mode. The DLM becomes a guided mode due to the presence of the waveguide. (c) Normalized transmission (red solid line), reflection (blue dashed line), and extinction (black dotted line) spectra of a finite array of five nanowires. The transmission exhibits two minima values around 650 nm and 810 nm. The first corresponds to the excitation of both the DLM and oDTM, while the second of the eDTM. Distribution of the magnitude and phase of the magnetic fields of the (d) oDTM, (e) DLM, and (f) eDTM eigenmodes at the edge of the first Brillouin zone.

Fig. 7.
Fig. 7.

Distribution of the (a) magnetic and (b) electric fields at λ=650  nm. The tip-LSPR is not efficiently excited but rather enhanced at the vertex of the wires due to the simultaneous excitation of the DLM and the oDTM. Distribution of the (c) magnetic and (d) electric fields at λ=810  nm. The tip-LSPR is efficiently excited due to the excitation of the eDTM.

Fig. 8.
Fig. 8.

(a) Schematic of a three-dimensional array of five gold nanocones integrated on top of a ridge dielectric waveguide. (b) Normalized transmission spectra of the integrated system. The excitation of the DTM is observed around λ={650,890,1150}nm for the aspect ratios AR={1,2,3}, respectively. The reflection curves are almost negligible for the three cases. Near-field maps of the absolute value of the electric field for a three-dimensional periodic array of nanocones placed on top of a ridge waveguide for an AR=2 at (c) λ=650  nm and (d) λ=890  nm. Like in the two-dimensional case, the excitation of the DLM leads to an enhancement of the electromagnetic field at the lower apexes of the nanocones at λ=650  nm and the DTM is efficiently excited at λ=890  nm with the TM0 fundamental mode of the dielectric waveguide (AR=2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

βdβi=2πmΛ,
{λΛ=nsubm(ninsubsinθi+1),into the substrate,λΛ=1m(nisinθi+1),into the superstrate,
{λΛnsubm(ninsubsinθi+1),into the substrate,λΛ1m(nisinθi+1),into the superstrate.
λΛ>(nisinθi+nsub).