Abstract

The behavior of terahertz pulse propagation in hollow optical fibers is investigated using terahertz time-domain spectroscopy. The transmission loss spectra of hollow optical fibers made of a flexible polycarbonate tube with an inner silver layer are measured at the wavelength range from 0.2 to 3 THz. The spectra of fibers with an inner diameter of 3 mm and length of 42 cm show some interference peaks around 1–2 THz, and it was found that these are due to mode interference between the lowest-order TE11 mode and second-order TM11 mode. The mode mixing is also explained from the results of time-frequency analysis conducted using a short-time Fourier transform, and it is confirmed that the traces of the TE11 and TM11 modes clearly appear at 0 to 10 ps after the first signal’s detection. The dispersion properties of the transmission modes are derived from the measured phases of transmitted pulses, and it was found that group velocities in hollow optical fibers decrease in the low-frequency region. The group velocity curve coincides well with the theoretical result of the TE11 mode in low frequencies, suggesting that the TM11 mode has little effect on the propagation constant of hollow optical fibers. Finally, terahertz wave remote spectroscopy was conducted using the hollow optical fiber, and a clear spectrum with absorption peaks of the theophylline at around 1 THz was acquired.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

9 December 2016: A correction was made to the pagination.


OSA Recommended Articles
Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy

Miguel Navarro-Cia, Carlos M. Bledt, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, James A. Harrington, and Oleg Mitrofanov
J. Opt. Soc. Am. B 30(1) 127-135 (2013)

Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy

Yuji Matsuura and Eriko Takeda
J. Opt. Soc. Am. B 25(12) 1949-1954 (2008)

Hybrid hollow core fibers with embedded wires as THz waveguides

Jessienta Anthony, Rainer Leonhardt, and Alexander Argyros
Opt. Express 21(3) 2903-2912 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Song and T. Nagatsuma, eds., Handbook of Terahertz Technologies: Devices and Applications (CRC Press, 2015).
  2. J. Son, ed., Terahertz Biomedical Science and Technology, 1st ed. (CRC Press, 2014).
  3. K. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, eds., Terahertz Spectroscopy and Imaging (Springer, 2013).
  4. C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).
  5. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulse in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
    [Crossref]
  6. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [Crossref]
  7. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
    [Crossref]
  8. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
    [Crossref]
  9. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014).
    [Crossref]
  10. K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
    [Crossref]
  11. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
    [Crossref]
  12. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–289 (2006).
    [Crossref]
  13. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [Crossref]
  14. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [Crossref]
  15. T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
    [Crossref]
  16. T. Hidaka, H. Minamide, and H. Ito, “Bent-angle dependency of ferroelectric PVDF cladding THz waveguides,” in Proceedings of the 11th IEEE International Conference on Terahertz Electronics (IEEE, 2003), p. 76.
  17. T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [Crossref]
  18. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
    [Crossref]
  19. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [Crossref]
  20. S. Sato, T. Katagiri, and Y. Matsuura, “Fabrication method of small-diameter hollow waveguides for terahertz waves,” J. Opt. Soc. Am. B 29, 3006–3009 (2012).
    [Crossref]
  21. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [Crossref]
  22. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  23. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
    [Crossref]
  24. M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
    [Crossref]
  25. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref]
  26. J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
    [Crossref]

2015 (2)

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

2014 (1)

2012 (3)

2011 (2)

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

2008 (2)

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

2004 (3)

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[Crossref]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[Crossref]

2003 (1)

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

2000 (2)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulse in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[Crossref]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[Crossref]

1990 (1)

Akiyama, T.

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Aníbal Fernández, F.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

Bang, O.

Bao, H.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[Crossref]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

Deibel, J. A.

Escarra, M. D.

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).

Fattinger, C.

Gallot, G.

George, R.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Grischkowsky, D.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

Harrington, J. A.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[Crossref]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[Crossref]

Hidaka, T.

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

T. Hidaka, H. Minamide, and H. Ito, “Bent-angle dependency of ferroelectric PVDF cladding THz waveguides,” in Proceedings of the 11th IEEE International Conference on Terahertz Electronics (IEEE, 2003), p. 76.

Hisazumi, J.

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

Ito, H.

T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[Crossref]

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

T. Hidaka, H. Minamide, and H. Ito, “Bent-angle dependency of ferroelectric PVDF cladding THz waveguides,” in Proceedings of the 11th IEEE International Conference on Terahertz Electronics (IEEE, 2003), p. 76.

Ito, T.

James, R.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulse in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[Crossref]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[Crossref]

Jepsen, P. U.

Katagiri, T.

Keiding, S.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

Maeta, S.

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

McGowan, R. W.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulse in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[Crossref]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[Crossref]

Melzer, J. E.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

Minamide, H.

T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[Crossref]

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

T. Hidaka, H. Minamide, and H. Ito, “Bent-angle dependency of ferroelectric PVDF cladding THz waveguides,” in Proceedings of the 11th IEEE International Conference on Terahertz Electronics (IEEE, 2003), p. 76.

Mitrofanov, O.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[Crossref]

Mittleman, D. M.

Miyagi, M.

Mueller, E.

Nakagami, H.

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

Navarro-Cía, M.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

Nielsen, K.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

Pedersen, P.

Pickwell-MacPherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Rasmussen, H. K.

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Sato, S.

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).

Suzuki, T.

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Takeda, E.

Terada, K.

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

van Exter, M.

Wang, K.

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).

Appl. Phys. Lett. (3)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulse in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[Crossref]

Chem. Pharm. Bull. (1)

J. Hisazumi, T. Suzuki, H. Nakagami, and K. Terada, “Quantification of pharmaceutical polymorphs and prediction of dissolution rate using theophylline tablet by terahertz spectroscopy,” Chem. Pharm. Bull. 59, 442–446 (2011).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2  THz,” J. Infrared Millim. Terahertz Waves 36, 542–555 (2015).
[Crossref]

J. Opt. Soc. Am. B (6)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Quantum Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quantum Imaging Med. Surg. 2, 33–45 (2012).

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Other (4)

H. Song and T. Nagatsuma, eds., Handbook of Terahertz Technologies: Devices and Applications (CRC Press, 2015).

J. Son, ed., Terahertz Biomedical Science and Technology, 1st ed. (CRC Press, 2014).

K. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, eds., Terahertz Spectroscopy and Imaging (Springer, 2013).

T. Hidaka, H. Minamide, and H. Ito, “Bent-angle dependency of ferroelectric PVDF cladding THz waveguides,” in Proceedings of the 11th IEEE International Conference on Terahertz Electronics (IEEE, 2003), p. 76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of measurement setup.

Fig. 2.
Fig. 2.

Temporal waveforms of THz waves of reference.

Fig. 3.
Fig. 3.

Frequency spectrum of THz waves of reference.

Fig. 4.
Fig. 4.

Temporal waveforms of THz waves after fiber propagation.

Fig. 5.
Fig. 5.

Frequency spectrum of THz waves after fiber propagation.

Fig. 6.
Fig. 6.

Measured loss spectrum of hollow optical fibers.

Fig. 7.
Fig. 7.

Measured and theoretical loss spectra of hollow optical fibers.

Fig. 8.
Fig. 8.

Frequency spectra map of transmitted THz pulse.

Fig. 9.
Fig. 9.

Normalized group velocity.

Fig. 10.
Fig. 10.

Schematic of measurement setup used for remote spectroscopy.

Fig. 11.
Fig. 11.

Absorption spectrum of theophyllyne.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η = β n 0 k 0 ( w 0 T ) 2 exp [ u 2 2 ( w 0 T ) 2 ] × { 1 ( 1 1 / u 2 ) J 1 2 ( u ) TE 11 1 J 0 2 ( u ) TM 11 .
α = u 4 ( u 2 1 ) · n n 2 + κ 2 · ( 1 k 0 2 T 3 + 1 u 4 T ) TE 11 ,
α = 1 T · n n 2 + κ 2 TM 11 ,
β = ( n 0 k 0 ) 2 ( u T ) 2 .
A = η × exp ( α z ) .
P = A TE 11 2 + A TM 11 2 2 + A TE 11 A TM 11 × cos ( ( β TE 11 β TM 11 ) z ) .
ω c = u T c .
v g = c 1 ( ω c ω ) 2 ,
τ = L v g = L c 1 ( ω c ω ) 2 .
v g = ω / β .
β = ( φ fiber ( ω ) φ ref ( ω ) ) L + k 0 .

Metrics