Abstract

Multiple absorption bands in a metal-insulator-metal (MIM) nanostructure are comprehensively investigated in the visible and near-infrared (near-IR) regime. The MIM nanostructure consists of patterned gold squares with systematically varying size and period atop a thin aluminum nitride dielectric layer on a thick gold film. Both the transverse-electric (TE) slab-waveguide mode and the transverse-magnetic (TM) surface plasmon-polariton mode can be excited in the nanostructure. Grating coupling of the incident light into nonlocalized traveling waves is found from electromagnetic field patterns and from the linear dispersion of the absorption modes with period. A localized mode strengthens the near-IR absorption band for small square sizes, and the resonance shifts to red for large square sizes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transformation from plasmon-induced transparence to -induced absorption through the control of coupling strength in metal-insulator-metal structure

Yoichiro Neo, Takahiro Matsumoto, Takeshi Watanabe, Makoto Tomita, and Hidenori Mimura
Opt. Express 24(23) 26201-26208 (2016)

Metal-insulator-metal plasmonic absorbers: influence of lattice

Yiting Chen, Jin Dai, Min Yan, and Min Qiu
Opt. Express 22(25) 30807-30814 (2014)

Plasmon resonance modes in two-dimensional arrays of metallic nanopillars

Hari P. Paudel, Mahdi Farrokh Baroughi, and Khadijeh Bayat
J. Opt. Soc. Am. B 27(9) 1693-1697 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
    [Crossref]
  2. A. Hessel and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [Crossref]
  3. O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
    [Crossref]
  4. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008).
    [Crossref]
  5. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
    [Crossref]
  6. C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011).
    [Crossref]
  7. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
    [Crossref]
  8. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
    [Crossref]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  11. J. Hendrickson, J. Guo, and B. Zhang, “Wideband perfect light absorber at mid-wave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
    [Crossref]
  12. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
    [Crossref]
  13. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
    [Crossref]
  14. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [Crossref]
  15. Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
    [Crossref]
  16. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012).
    [Crossref]
  17. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
    [Crossref]
  18. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [Crossref]
  19. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  20. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2009).
    [Crossref]
  21. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  22. Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [Crossref]
  23. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
    [Crossref]
  24. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
    [Crossref]
  25. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
    [Crossref]
  26. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [Crossref]
  27. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [Crossref]
  28. N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [Crossref]
  29. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  30. A. Pors and S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21, 2942–2952 (2013).
    [Crossref]
  31. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extend plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
    [Crossref]
  32. W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
    [Crossref]
  33. FDTD Solutions, Lumerical Solutions, Inc. (Vancouver, British Columbia, Canada).
  34. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).
  35. H. R. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  36. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100, 121121 (2012).
    [Crossref]
  37. WVASE software package, J. A. Woollam Co., Inc. (Lincoln, Nebraska).

2013 (3)

2012 (6)

2011 (7)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[Crossref]

2010 (3)

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

2009 (5)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2009).
[Crossref]

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
[Crossref]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
[Crossref]

2008 (5)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008).
[Crossref]

2007 (1)

1973 (1)

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[Crossref]

1965 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Abbas, M. N.

Akozbek, N.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Albrektsen, O.

Atwater, H. A.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100, 121121 (2012).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Barnes, W. L.

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Bonod, N.

Bozhevolnyi, S. I.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Callahan, D. M.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100, 121121 (2012).
[Crossref]

Cesario, J.

Chang, Y.-C.

Chen, Q.

Chen, S.

Chen, X.

Cheng, C.-W.

Chern, R.-L.

Cheylan, S.

Chiu, C.-W.

Chu, Y.

Crozier, K. B.

Cumming, D. R. S.

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Economou, E. N.

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Enoch, S.

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Foteinopoulou, S.

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Gonzalez, M. U.

Grant, J.

Gui, T.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Guo, J.

Hao, Q.

He, S.

He, X.-J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Hessel, A.

Hu, C.

Huang, T. J.

Hunderi, O.

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[Crossref]

Jiang, Z.-H.

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Jin, Y.

Kafesaki, M.

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Khalid, A.

Khoo, I.-C.

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Lai, K.-T.

Landy, N. I.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lee, H. M.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[Crossref]

Lin, C.-H.

Lin, H.-Y.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Luo, X.

Ma, Y.

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Mayer, T. S.

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Maystre, D.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Munday, J. N.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100, 121121 (2012).
[Crossref]

Myers, H. P.

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[Crossref]

Nielsen, M. G.

Oliner, A. A.

Padilla, W. J.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Popov, E.

Pors, A.

Quidant, R.

Rather, H. R.

H. R. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Saha, S. C.

Saj, W. M.

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Shih, M.-H.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Shvets, G.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Tayeb, G.

Toor, F.

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Wang, J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Wang, Y.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Werner, D. H.

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Wu, C.

Wu, J. C.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[Crossref]

Wu, Q.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Ye, Y. Q.

Yun, S.

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Zhang, B.

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Zhang, X.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Zhao, Y.

Zhao, Z.

ACS Nano (1)

Z.-H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a mid-infrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100, 121121 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (2)

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

J. Phys. F (1)

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Opt. Express (10)

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008).
[Crossref]

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
[Crossref]

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[Crossref]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
[Crossref]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

A. Pors and S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21, 2942–2952 (2013).
[Crossref]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extend plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
[Crossref]

Opt. Lett. (4)

Philos. Mag. Ser. 6 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Phys. Rev. B (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Proc. SPIE (1)

W. M. Saj, S. Foteinopoulou, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Periodically structured plasmonic waveguides,” Proc. SPIE 6987, 69870Y (2008).
[Crossref]

Prog. Electromagn. Res. (1)

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381-397 (2011).
[Crossref]

Sci. Rep. (1)

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Other (4)

FDTD Solutions, Lumerical Solutions, Inc. (Vancouver, British Columbia, Canada).

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).

H. R. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

WVASE software package, J. A. Woollam Co., Inc. (Lincoln, Nebraska).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematics of the MIM structure. Incident light is polarized in the x-direction and propagates in the z-direction. (b) Scanning electron micrograph of a fabricated device consisting of a gold square array of a period of 460 nm and square size of 220 nm.

Fig. 2.
Fig. 2.

(a) Two-dimensional plot of reflectance spectra measured from MIM devices fabricated with a nominally equal gold square size of 172 nm, but different array periods. (b) Selected reflectivity spectra from several fabricated devices with periods of 360, 400, 440, 480, and 520 nm.

Fig. 3.
Fig. 3.

(a) Two-dimensional plot of measured reflectivity spectra from fabricated devices with a constant period of 460 nm, but different gold square sizes. (b) Measured reflectivity spectral curves from four devices with square sizes of 213, 242, 286, and 354 nm, respectively.

Fig. 4.
Fig. 4.

Calculated reflectivity versus the wavelength and the array period for different gold square sizes of (a) 140, (b) 180, (c) 220, and (d) 260 nm. Black dashed curves plot the dispersion of a propagating TM mode modeled analytically in Section 3. All other superposed curves are guides to the eye.

Fig. 5.
Fig. 5.

Two-dimensional plots of reflectivity spectra as a function of square size for a fixed period of (a) 280, (b) 340, (c) 400, and (d) 460 nm. Black dashed curves plot the dispersion of a propagating TM mode modeled analytically in Section 3. All other superposed curves are guides to the eye.

Fig. 6.
Fig. 6.

Calculated electric and magnetic field intensities as labeled at the three peak absorption wavelengths of 643 (a)–(c), 693 (d)–(f), and 811 nm (g)–(i). The gold square size is 100 nm, and the period of gold square array is 460 nm.

Fig. 7.
Fig. 7.

Simulations for an array of 180 nm Au squares with a 460 nm period. Simulated electric and magnetic field intensities at the two peak absorption wavelengths of 689 (a)–(c) and 841 nm (d)–(f).

Fig. 8.
Fig. 8.

Simulations for an array of 260 nm Au squares with a 460 nm period. Simulated electric field and magnetic field intensity distributions at the absorption wavelengths of 647 (a)–(c) and 835 nm (d)–(f).

Fig. 9.
Fig. 9.

Simulations for an array of 340 nm Au squares with a 460 nm period. Simulated electric field and magnetic field intensity distributions at the peak absorption wavelengths of 611 (a)–(c) and 881 nm (d)–(f).

Fig. 10.
Fig. 10.

Computed scattering cross-section spectra for two single isolated Au squares lying on a 90 nm thick film of AlN deposited on an Au substrate. The two squares have side lengths of 100 and 140 nm. Note the rapid dispersion with the size of the mode in the near IR. Inset: electric and magnetic field intensities at the resonance wavelength of 0.98 micron for the 100 nm metal square, plotted in a plane parallel to the substrate and bisecting the AlN film. Compare the patterns in Figs. 6(e) and 6(f) for a 100 nm square in an array at the bluer grating-coupled wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p = l 2 + m 2 λ 0 / n m ,
λ 0 = n mim s + n spp ( p s ) .

Metrics