Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Toward ultimate nanophotonic light trapping using pattern-designed quasi-guided mode excitations

Not Accessible

Your library or personal account may give you access

Abstract

In this work, a shape-optimized periodic pattern design is employed to boost the short circuit current of solar cells. A decent result of an additional 16.1% enhancement in short circuit current is achieved by solely pattern-wise optimization, compared to the baseline structure that is already under full parameter optimization. The underlying physics is that the shape-optimized pattern leads to optimal quasi-guided mode excitations. As a result of the pattern design, a single strongly confined quasi-guided mode is replaced with several weakly confined modes, to cover a broader spectral range. Previous works of optimized periodic gratings result in gradually varied grating heights and require grayscale lithography leading to high process complexity. Using randomized pattern for isotropic Lambertian light trapping, on the other hand, leads to an overly large simulation domain. The proposed pattern design methodology achieves the optimal balance between the slow-light enhancement strength and the enhancement spectral range for nanophotonic light trapping using quasi-guided modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns

Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 20(S2) A224-A244 (2012)

Nanophotonic light trapping with patterned transparent conductive oxides

Alok P. Vasudev, Jon A. Schuller, and Mark L. Brongersma
Opt. Express 20(S3) A385-A394 (2012)

Angular dependence of light trapping in nanophotonic thin-film solar cells

Michael Smeets, Vladimir Smirnov, Karsten Bittkau, Matthias Meier, Reinhard Carius, Uwe Rau, and Ulrich W. Paetzold
Opt. Express 23(24) A1575-A1588 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.