Abstract

It has been demonstrated recently that metal gratings can significantly improve the near-infrared absorptance of graphene from 0.023 to nearly 0.70 because of the excitation of magnetic polaritons (MPs). In the present study, it is shown that the absorptance of graphene can be further enhanced to more than 0.80 by surface plasmon polaritons (SPPs) enabled by the grating. Meanwhile, graphene behaves as a sheet resistor that is able to boost the absorption when MPs or SPPs are excited without changing their resonance frequencies or dispersion relations. The effects of higher-order MPs, as well as the grating geometry on the enhanced absorptance, are also examined. Rigorous coupled-wave analysis (RCWA) is employed to calculate the radiative properties and power dissipation density in both the graphene and the metal grating. This study will facilitate the understanding of the coupling phenomena between graphene and nanostructures and may also benefit the design of next-generation graphene-based optical and optoelectronic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene plasmonics for surface enhancement near-infrared absorptivity

QingHui Pan, JiaRong Hong, GuoHua Zhang, Yong Shuai, and HePing Tan
Opt. Express 25(14) 16400-16408 (2017)

Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure

Lei Zhang, Linlong Tang, Wei Wei, Xinlu Cheng, Wei Wang, and Hong Zhang
Opt. Express 24(18) 20002-20009 (2016)

Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies

Jigang Hu, Yeming Qing, Shuying Yang, Yongze Ren, Xiaohang Wu, Weiqing Gao, and Chunyan Wu
J. Opt. Soc. Am. B 34(4) 861-868 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  2. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [Crossref]
  3. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  4. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
    [Crossref]
  5. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
    [Crossref]
  6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  7. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
    [Crossref]
  8. D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
    [Crossref]
  9. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [Crossref]
  10. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
    [Crossref]
  11. V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
    [Crossref]
  12. B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
    [Crossref]
  13. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
    [Crossref]
  14. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  15. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
    [Crossref]
  16. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
    [Crossref]
  17. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21, 9144–9155 (2013).
    [Crossref]
  18. J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
    [Crossref]
  19. H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
    [Crossref]
  20. T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
    [Crossref]
  21. B.-Z. Xu, C.-Q. Gu, Z. Li, and Z.-Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21, 23803–23811 (2013).
    [Crossref]
  22. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
    [Crossref]
  23. X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).
  24. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012).
    [Crossref]
  25. N. M. R. Peres and V. B. Yu, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002 (2013).
    [Crossref]
  26. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
    [Crossref]
  27. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
    [Crossref]
  28. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref]
  29. Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
    [Crossref]
  30. T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
    [Crossref]
  31. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref]
  32. M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
    [Crossref]
  33. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
    [Crossref]
  34. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38, 4342–4345 (2013).
    [Crossref]
  35. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22, 31511–31519 (2014).
    [Crossref]
  36. J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
    [Crossref]
  37. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
    [Crossref]
  38. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
    [Crossref]
  39. B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
    [Crossref]
  40. http://zhang-nano.gatech.edu/.
  41. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  42. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
    [Crossref]
  43. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
    [Crossref]
  44. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
  45. J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 151, 49–57 (2015).
    [Crossref]
  46. K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369–10376 (2010).
    [Crossref]
  47. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
    [Crossref]
  48. F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
    [Crossref]
  49. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20, 5882–5890 (2012).
    [Crossref]
  50. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  51. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [Crossref]
  52. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [Crossref]
  53. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [Crossref]
  54. J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
    [Crossref]
  55. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [Crossref]
  56. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  57. R. Feng, J. Qiu, L. H. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22, A1713–A1724 (2014).
    [Crossref]
  58. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
    [Crossref]
  59. H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
    [Crossref]

2015 (2)

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 151, 49–57 (2015).
[Crossref]

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
[Crossref]

2014 (15)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
[Crossref]

R. Feng, J. Qiu, L. H. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22, A1713–A1724 (2014).
[Crossref]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22, 31511–31519 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[Crossref]

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
[Crossref]

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
[Crossref]

2013 (11)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

N. M. R. Peres and V. B. Yu, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002 (2013).
[Crossref]

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21, 9144–9155 (2013).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]

B.-Z. Xu, C.-Q. Gu, Z. Li, and Z.-Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21, 23803–23811 (2013).
[Crossref]

W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38, 4342–4345 (2013).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

2012 (10)

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20, 5882–5890 (2012).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

2011 (4)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

2010 (3)

K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369–10376 (2010).
[Crossref]

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

2009 (2)

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[Crossref]

2008 (4)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

2007 (1)

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

1999 (2)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[Crossref]

1998 (1)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Agrawal, M.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Aközbek, N.

Alaee, R.

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Andryieuski, A.

Atwater, H. A.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Avouris, P.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Bagaeva, T. Y.

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

Bao, Z.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Basov, D. N.

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

Becerril, H. A.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Bianco, G. V.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Brar, V. W.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Brenner, K.-H.

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Bruno, G.

Bustarret, E.

Capasso, F.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Carminati, R.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

Chen, J. X.

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

Chen, L.

Chen, Y.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Chen, Y. B.

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[Crossref]

Chen, Y.-B.

Choi, M.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

D’Orazio, A.

de Abajo, F. J. G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
[Crossref]

de Ceglia, D.

De Vittorio, M.

Dechelette, A.

Deng, X.-H.

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Ding, W.

Duan, X.-F.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Farhat, M.

Farzad, M. H.

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

Feng, R.

Feng, Y.

Ferrari, A. C.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Fogler, M. M.

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

Fournier, T.

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[Crossref]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Gómez-Santos, G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Grande, M.

Greffet, J. J.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Gu, C.-Q.

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hashemi, M.

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hu, J.-H.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Hu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

Huang, Y.-Q.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Jang, M. S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Jiang, T.

Jiang, X.

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Jiang, Y.

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Kats, M. A.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Kim, L.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Kim, S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Lanzara, A.

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

Laroche, M.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

Lavrinenko, A. V.

Lederer, F.

Lee, B. J.

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[Crossref]

Lee, S. S.

Li, Z.

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

B.-Z. Xu, C.-Q. Gu, Z. Li, and Z.-Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21, 23803–23811 (2013).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Lim, M.

Lin, Y.-M.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Liu, B.

B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
[Crossref]

Liu, J.-T.

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

Liu, L. H.

Liu, N.-H.

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

Liu, P.

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Liu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

Liu, Y.

B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
[Crossref]

Liu, Z.

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Lo, Y.-L.

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Lopez, J. J.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Lopez-Rios, T.

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

Lu, Y.

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

Lu, Z.

Marquier, F.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Martin-Moreno, L.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

Ming, H.

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

Mortensen, N. A.

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Nesterov, M. L.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

Nguyen-Huu, N.

Nikitin, A. Y.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Niu, Z.-Y.

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Otsuji, T.

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

Pannetier, B.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[Crossref]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Peres, N. M. R.

N. M. R. Peres and V. B. Yu, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002 (2013).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

Petruzzelli, V.

Peumans, P.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Popov, V. V.

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Pu, Y.

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Qiu, J.

Rauter, P.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Ren, X.-M.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Rockstuhl, C.

Ryzhii, V.

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Sanchez-Dehesa, J.

Sánchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

Scalora, M.

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Shen, S.

B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Sherrott, M. C.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

Shi, K.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Slipchenko, T. M.

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Stauber, T.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Stomeo, T.

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Su, F.-H.

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

Sun, X.

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Vincenti, M. A.

Wang, F.

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Wang, H.

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
[Crossref]

Wang, J.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Wang, L.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

Wang, L. P.

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[Crossref]

Wang, P.

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

Wang, Q.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Wu, J.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

Xia, F.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Xiao, S.

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

Xu, B.-Z.

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Yang, H.

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Ying, X.

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

Yu, V. B.

N. M. R. Peres and V. B. Yu, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002 (2013).
[Crossref]

Yuan, H.

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Zhan, T. R.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

Zhang, X.

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
[Crossref]

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

Zhang, Z. M.

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 151, 49–57 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[Crossref]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[Crossref]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zhao, B.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhao, F. Y.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

Zhao, J.

Zhao, J. M.

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 151, 49–57 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

Zhao, W.

Zhu, B.

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Zi, J.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

ACS Nano (2)

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 43–48 (2010).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

ACS Photonics (1)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Appl. Phys. Lett. (3)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

J.-H. Hu, Y.-Q. Huang, X.-F. Duan, Q. Wang, X. Zhang, J. Wang, and X.-M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105, 221113 (2014).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[Crossref]

Europhys. Lett. (2)

J.-T. Liu, N.-H. Liu, L. Wang, X.-H. Deng, and F.-H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector,” Europhys. Lett. 104, 57002 (2013).
[Crossref]

N. M. R. Peres and V. B. Yu, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002 (2013).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. Comput. Theor. Nanosci. (1)

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[Crossref]

J. Heat Transfer (1)

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11–16 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (4)

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 045104 (2015).
[Crossref]

M. Hashemi, M. H. Farzad, N. A. Mortensen, and S. Xiao, “Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures,” J. Opt. 15, 055003 (2013).
[Crossref]

T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt. 15, 114008 (2013).
[Crossref]

X. Ying, Y. Pu, Z. Li, Z. Liu, and Y. Jiang, “Absorption enhancement of graphene salisbury screen in the mid-infrared regime,” J. Opt. 44, 1–9 (2014).

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).

J. Quant. Spectrosc. Radiat. Transfer (3)

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 151, 49–57 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transfer 149, 33–40 (2014).
[Crossref]

Nano Lett. (5)

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

H. Yuan, H. Yang, P. Liu, X. Jiang, and X. Sun, “Mode manipulation and near-THz absorptions in binary grating-graphene layer structures,” Nanoscale Res. Lett. 9, 90 (2014).
[Crossref]

Nat. Commun. (1)

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Nat. Nanotechnol. (2)

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Express (9)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22, 22743–22752 (2014).
[Crossref]

R. Feng, J. Qiu, L. H. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22, A1713–A1724 (2014).
[Crossref]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22, 31511–31519 (2014).
[Crossref]

K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369–10376 (2010).
[Crossref]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20, 5882–5890 (2012).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21, 9144–9155 (2013).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]

B.-Z. Xu, C.-Q. Gu, Z. Li, and Z.-Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21, 23803–23811 (2013).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (7)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene salisbury screen,” Phys. Rev. B 90, 165409 (2014).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86, 165416 (2012).
[Crossref]

V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010).
[Crossref]

B. Liu, Y. Liu, and S. Shen, “Thermal plasmonic interconnects in graphene,” Phys. Rev. B 90, 195411 (2014).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Phys. Rev. E (1)

J. X. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[Crossref]

Phys. Rev. Lett. (4)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[Crossref]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014).
[Crossref]

Rev. Mod. Phys. (1)

D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959–994 (2014).
[Crossref]

Science (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Other (2)

http://zhang-nano.gatech.edu/.

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the graphene-covered one-dimensional grating nanostructure for a plane TM wave incident at an angle of θ . The top medium and the trench region are assumed to be a vacuum or air, and the bottom Ag region is assumed to be opaque or semi-infinite.

Fig. 2.
Fig. 2.

Comparison of the absorptance of the graphene-covered and plain Ag grating with h = 200 nm , Λ = 400 nm , and b = 30 nm at incidence angle θ = 10 ° for TM waves.

Fig. 3.
Fig. 3.

Absorptance contours for (a) plain Ag grating and (b) graphene-covered grating. The white solid and dashed lines indicate the incidence at θ = 10 ° and θ = 40 ° , respectively, and the intersections indicated by the dot markers correspond to the three absorption peaks shown in Fig. 2.

Fig. 4.
Fig. 4.

Absorptance contours at normal incidence for the (a) plain and (b) graphene-covered Ag gratings in terms of the wavenumber and the grating height h .

Fig. 5.
Fig. 5.

Electromagnetic fields for (a) MP1 ( ν = 6700 cm 1 ) and (b) MP2 ( ν = 18350 cm 1 ) at θ = 10 ° . The contour shows the normalized magnitude of the magnetic field, while the arrows indicate the direction and relative magnitude of the electric field.

Fig. 6.
Fig. 6.

Magnitude of the x -component of the electric field at z = Δ / 2 for plain and graphene-covered gratings at (a) MP1 ( ν = 6700 cm 1 ) and (b) MP2 ( ν = 18350 cm 1 ) resonances for θ = 10 ° .

Fig. 7.
Fig. 7.

Power dissipation profiles for the two structures when θ = 10 ° : (a), (b) MP1 resonance ( ν = 6700 cm 1 ) and (c), (d) MP2 resonance ( ν = 18350 cm 1 ). The left (a), (c) are for the plain Ag grating and the right (b), (d) are for the graphene-covered grating. The unit of w is 10 5 W / m 3 and the scale bar is not linear beyond 6 × 10 5 W / m 3 .

Fig. 8.
Fig. 8.

(a), (b) Electromagnetic field distribution for plain grating, (c), (d) power dissipation contour for plain grating, and (e), (f) power dissipation contour for graphene-covered grating. The left figures (a), (c), (e) are for normal incidence at the SPP resonance ν = 24050 cm 1 and the right figures (b), (d), (f) are for θ = 10 ° at the SPP resonance ν = 20930 cm 1 . The unit of w is 10 5 W / m 3 , and the scale is not linear beyond 6 × 10 5 W / m 3 .

Fig. 9.
Fig. 9.

Power dissipation density profile across the middle of the graphene layer when the SPP resonance is excited at normal incidence and θ = 10 ° .

Tables (1)

Tables Icon

Table 1. Absorptance Calculated from RCWA at the Wavenumber Corresponding to the Resonance of Different Modes for Incidence Angle θ = 0 ° (Normal) and 10° with TM Waves a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = 1 + i σ s ε 0 ω Δ ,
σ D = i ω + i / τ 2 e 2 k B T π 2 ln [ 2 cosh ( μ 2 k B T ) ]
σ I = e 2 4 [ G ( ω 2 ) + i 4 ω π 0 G ( ξ ) G ( ω / 2 ) ( ω ) 2 4 ξ 2 d ξ ] ,
w ( x , z ) = 1 2 ε 0 ω ε ( x , z ) | E ( x , z ) | 2 ,
α = w ( x , z ) d V 1 2 c 0 ε 0 | E inc | 2 A cos θ .
P abs = G w ( x , z ) d V = σ s 2 Λ / 2 Λ / 2 | E x ( x ) | 2 d x .
P abs σ s 2 Λ | Λ / 2 Λ / 2 E x ( x ) d x | 2 .

Metrics