Abstract

The scaling that has governed the continual increase in density, performance, and efficiency of electronic devices is rapidly reaching its inevitable limitations. In order to sustain the trend of ever-increasing bandwidth and performance, new technologies are being considered. Among the many competitors, nanophotonic technologies are especially poised to have an impact on the field of integrated devices. Here, we examine the available technologies, both traditional photonics and plasmonics, with emphasis on the latter. A summary of the previous advances in the field of nanophotonics (interconnects and modulators), along with more recent works investigating novel and CMOS-compatible materials, are presented with a graphical comparison of their performance. We suggest that nanophotonic technologies offer key advantages for future hybrid electrophotonic devices, where the movement toward new material platforms is a precursor to high-performance, industry-ready devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials

Viktoriia E. Babicheva, Nathaniel Kinsey, Gururaj V. Naik, Marcello Ferrera, Andrei V. Lavrinenko, Vladimir M. Shalaev, and Alexandra Boltasseva
Opt. Express 21(22) 27326-27337 (2013)

CMOS plasmonics in WDM data transmission: 200 Gb/s (8 × 25Gb/s) transmission over aluminum plasmonic waveguides

G. Dabos, A. Manolis, S. Papaioannou, D. Tsiokos, L. Markey, J.-C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, and N. Pleros
Opt. Express 26(10) 12469-12478 (2018)

Mode properties in metallic and non-metallic plasmonic waveguides

Wanwan Liu, Yifu Chen, Xin Hu, Long Wen, Lin Jin, Qiang Su, and Qin Chen
Appl. Opt. 56(16) 4861-4867 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Kurzweil, “The law of accelerating returns,” http://www.kurzweilai.net/the-law-of-accelerating-returns (2001).
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref]
  3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
    [Crossref]
  4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  5. NCTA, Industry Data (National Cable & Telecommunications Association, 2014).
  6. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  7. Intel Corporation, “Thunderbolt technology,” in Tech. Brief (2012).
  8. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  10. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Stanford Publishing, 2008).
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).
  13. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
  14. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref]
  15. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  16. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  17. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  18. M. I. Stockman, “Nanoplasmonics: past, present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref]
  19. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull 37, 768–779 (2012).
    [Crossref]
  20. I. de Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
  21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  22. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
    [Crossref]
  23. M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
    [Crossref]
  24. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [Crossref]
  25. S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).
  26. J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
    [Crossref]
  27. D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
    [Crossref]
  28. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  29. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6  um,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
  30. B. N. Kurdi and D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988).
    [Crossref]
  31. B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
    [Crossref]
  32. A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
    [Crossref]
  33. A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions,” IEE Proc. Optoelectron. 141, 391–393 (1994).
  34. A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
    [Crossref]
  35. R. A. Soref, “Silicon-based optoelectroncis,” Proc. IEEE 81, 1687–1706 (1993).
    [Crossref]
  36. D. G. Hall, “Survey of silicon-based integrated optics,” Computer 20, 25–32 (1987).
    [Crossref]
  37. R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).
  38. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [Crossref]
  39. S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
    [Crossref]
  40. R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
    [Crossref]
  41. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
    [Crossref]
  42. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
  43. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2009).
  44. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
  45. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
    [Crossref]
  46. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109, 053901 (2012).
    [Crossref]
  47. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
  48. A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
    [Crossref]
  49. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
  50. A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
    [Crossref]
  51. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref]
  52. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [Crossref]
  53. A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.
  54. A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
  55. B. Edwards and N. Engheta, “Suspended MIM optical waveguides with optical nano-antennas,” in Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2014).
  56. J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).
  57. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
    [Crossref]
  58. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
  59. V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
    [Crossref]
  60. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).
  61. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
    [Crossref]
  62. A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
    [Crossref]
  63. O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
    [Crossref]
  64. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  65. A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
    [Crossref]
  66. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [Crossref]
  67. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [Crossref]
  68. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
    [Crossref]
  69. F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).
  70. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
    [Crossref]
  71. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
  72. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).
  73. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
    [Crossref]
  74. J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).
  75. M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  76. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
    [Crossref]
  77. Y. Tuang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007).
    [Crossref]
  78. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
    [Crossref]
  79. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
    [Crossref]
  80. Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).
  81. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
  82. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).
  83. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
    [Crossref]
  84. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref]
  85. R. Chau, R. Arghavani, and M. Doczy, “Method for making a semiconductor devices having a high-k gate dielectric,” U.S. patent6,617,210 B1 (Sept.9, 2003), Intel Corp.
  86. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
    [Crossref]
  87. B. Yu and D. Wu, “Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation,” U.S. patent6,784,101 B1 (August31, 2004), Advanced Micro Devices Inc.
  88. K. Y. Ahn and L. Forbes, “Highly reliable amorphous high-k gate dielectric ZrOXNY,” U.S. patent6,767,795 B2 (July27, 2004), Micron Technology, Inc.
  89. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).
  90. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
    [Crossref]
  91. C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
    [Crossref]
  92. N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).
  93. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
    [Crossref]
  94. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  95. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
    [Crossref]
  96. D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
    [Crossref]
  97. D. McWilliams and D. W. Lynch, “Infrared reflectivities of magnesium silicide, germanide, and stannide,” Phys. Rev. Lett. 130, 2248–2252 (1963).
  98. Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).
  99. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
    [Crossref]
  100. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-ingrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
    [Crossref]
  101. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
  102. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  103. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
    [Crossref]
  104. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today (2014).
    [Crossref]
  105. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  106. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).
  107. A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
    [Crossref]
  108. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
    [Crossref]
  109. H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67,” J. Phys. Chem. 66, 816–821 (1962).
    [Crossref]
  110. E. A. Gulbransen and W. S. Wysong, “Thin oxide films on aluminum,” J. Phys. Chem. 51, 1087–1103 (1947).
    [Crossref]
  111. R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” U.S. patent5,985,762 (Nov.16, 1999), International Business Machines Corporation.
  112. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).
  113. A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
    [Crossref]
  114. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
    [Crossref]
  115. Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).
  116. U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
    [Crossref]
  117. R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
    [Crossref]
  118. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  119. A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. Device Mater. Rel. 9, 147–162 (2009).
  120. R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.
  121. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
  122. H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
    [Crossref]
  123. M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).
  124. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
  125. J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
    [Crossref]
  126. T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films 203, 297–302 (1991).
    [Crossref]
  127. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
    [Crossref]
  128. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
    [Crossref]
  129. J. C. C. Fan, “Preparation of Sn-doped In2O3 (ITO) fims at low deposition temperatures by ion-beam sputtering,” Appl. Phys. Lett. 34, 515–517 (1979).
    [Crossref]
  130. T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
    [Crossref]
  131. W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Sol. Energy Mater. Sol. Cells 64, 37–45 (2001).
  132. A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).
  133. H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
    [Crossref]
  134. H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
    [Crossref]
  135. K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).
  136. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
    [Crossref]
  137. L. Novotny, Principles of Nano-Optics (Cambridge University, 2012).
  138. F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.
  139. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [Crossref]
  140. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [Crossref]
  141. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [Crossref]
  142. L. Dobrzynski and A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
  143. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 162676–2684 (2008).
    [Crossref]
  144. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [Crossref]
  145. I. Novikov and A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
  146. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [Crossref]
  147. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  148. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
    [Crossref]
  149. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [Crossref]
  150. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
    [Crossref]
  151. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
    [Crossref]
  152. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [Crossref]
  153. G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. thesis (University of Toronto, 1977).
  154. G. J. Kovacs, “Optical excitation of surface plasma waves in an indium film bounded by dielectric layers,” Thin Solid Films 60, 33–44 (1979).
    [Crossref]
  155. G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
    [Crossref]
  156. Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
    [Crossref]
  157. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [Crossref]
  158. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
    [Crossref]
  159. M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  160. J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
    [Crossref]
  161. J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
    [Crossref]
  162. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
  163. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).
  164. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
    [Crossref]
  165. A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
  166. E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
  167. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [Crossref]
  168. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [Crossref]
  169. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [Crossref]
  170. V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
  171. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).
  172. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
    [Crossref]
  173. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [Crossref]
  174. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
  175. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
    [Crossref]
  176. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [Crossref]
  177. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
    [Crossref]
  178. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
    [Crossref]
  179. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
    [Crossref]
  180. A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).
  181. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
    [Crossref]
  182. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 1817958–17966 (2010).
  183. L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).
  184. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
    [Crossref]
  185. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
  186. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
  187. A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
    [Crossref]
  188. D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
    [Crossref]
  189. J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
  190. J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).
  191. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
    [Crossref]
  192. A. V. Krasavin and V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
    [Crossref]
  193. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
    [Crossref]
  194. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
    [Crossref]
  195. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
  196. S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
    [Crossref]
  197. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).
  198. J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).
  199. J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett. 23, 1481–1483 (2011).
  200. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393(2011).
  201. M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).
  202. X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).
  203. J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
  204. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref]
  205. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
    [Crossref]
  206. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
  207. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
  208. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
    [Crossref]
  209. Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
    [Crossref]
  210. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
  211. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [Crossref]
  212. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
    [Crossref]
  213. J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).
  214. Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.
  215. S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
    [Crossref]
  216. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
    [Crossref]
  217. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
    [Crossref]
  218. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
    [Crossref]
  219. A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  220. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref]
  221. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).
  222. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
    [Crossref]
  223. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [Crossref]
  224. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).
  225. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).
  226. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
    [Crossref]
  227. A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).
  228. P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).
  229. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
    [Crossref]
  230. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
    [Crossref]
  231. R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
    [Crossref]
  232. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
    [Crossref]
  233. S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
    [Crossref]
  234. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
    [Crossref]
  235. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
  236. K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [Crossref]
  237. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  238. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
    [Crossref]
  239. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
    [Crossref]
  240. R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).
  241. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
  242. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).
  243. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012).
    [Crossref]
  244. V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).
  245. V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).
  246. M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
    [Crossref]
  247. C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).
  248. Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
    [Crossref]
  249. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
  250. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
    [Crossref]
  251. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
    [Crossref]
  252. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
  253. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).
  254. E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
    [Crossref]

2014 (17)

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

2013 (17)

M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
[Crossref]

V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
[Crossref]

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
[Crossref]

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
[Crossref]

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

2012 (22)

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109, 053901 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull 37, 768–779 (2012).
[Crossref]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref]

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
[Crossref]

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012).
[Crossref]

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).

2011 (25)

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett. 23, 1481–1483 (2011).

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393(2011).

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-ingrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

2010 (28)

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).

I. de Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 1817958–17966 (2010).

A. V. Krasavin and V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[Crossref]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

2009 (15)

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
[Crossref]

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. Device Mater. Rel. 9, 147–162 (2009).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2009).

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).

2008 (15)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[Crossref]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 162676–2684 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

2007 (17)

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[Crossref]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Y. Tuang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).

2006 (13)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

2005 (11)

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[Crossref]

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

2004 (5)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

2003 (4)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

2002 (6)

M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
[Crossref]

I. Novikov and A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

2001 (4)

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Sol. Energy Mater. Sol. Cells 64, 37–45 (2001).

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

2000 (1)

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

1999 (1)

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
[Crossref]

1998 (3)

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
[Crossref]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).

1997 (1)

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

1996 (1)

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

1994 (2)

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions,” IEE Proc. Optoelectron. 141, 391–393 (1994).

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

1993 (1)

R. A. Soref, “Silicon-based optoelectroncis,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

1992 (2)

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

1991 (2)

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films 203, 297–302 (1991).
[Crossref]

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

1988 (1)

B. N. Kurdi and D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988).
[Crossref]

1987 (1)

D. G. Hall, “Survey of silicon-based integrated optics,” Computer 20, 25–32 (1987).
[Crossref]

1986 (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6  um,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).

1985 (1)

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

1983 (3)

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
[Crossref]

Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[Crossref]

1981 (2)

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).

A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).

1979 (2)

G. J. Kovacs, “Optical excitation of surface plasma waves in an indium film bounded by dielectric layers,” Thin Solid Films 60, 33–44 (1979).
[Crossref]

J. C. C. Fan, “Preparation of Sn-doped In2O3 (ITO) fims at low deposition temperatures by ion-beam sputtering,” Appl. Phys. Lett. 34, 515–517 (1979).
[Crossref]

1978 (1)

G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[Crossref]

1972 (1)

L. Dobrzynski and A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

1963 (1)

D. McWilliams and D. W. Lynch, “Infrared reflectivities of magnesium silicide, germanide, and stannide,” Phys. Rev. Lett. 130, 2248–2252 (1963).

1962 (1)

H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67,” J. Phys. Chem. 66, 816–821 (1962).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

1947 (1)

E. A. Gulbransen and W. S. Wysong, “Thin oxide films on aluminum,” J. Phys. Chem. 51, 1087–1103 (1947).
[Crossref]

Abb, M.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

Abbasi, F.

F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Adamo, G.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Aers, G.

A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).

Ahn, K. Y.

K. Y. Ahn and L. Forbes, “Highly reliable amorphous high-k gate dielectric ZrOXNY,” U.S. patent6,767,795 B2 (July27, 2004), Micron Technology, Inc.

Akimov, A.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Albrektsen, O.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

Alivisatos, A. P.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Alu, A.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

An, S.

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Andersen, T.

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

Andersen, T. B.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

Anderson, D. B.

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

Andryieuski, A.

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Apostolopoulos, D.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Arbel, D.

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

Arghavani, R.

R. Chau, R. Arghavani, and M. Doczy, “Method for making a semiconductor devices having a high-k gate dielectric,” U.S. patent6,617,210 B1 (Sept.9, 2003), Intel Corp.

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).

Asiri, H.

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

Aspnes, D. E.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

Assefa, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Atwater, H.

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

Atwater, H. A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[Crossref]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

Augendre, E.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Avci, S.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

Avramopoulos, H.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Babicheva, V.

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

Babicheva, V. E.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Bai, P.

K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).

Ballato, J.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Banks, J. M.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Bardhan, R.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Barnes, W.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Barwicz, T.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Belan, S.

S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
[Crossref]

Berini, P.

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

I. de Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
[Crossref]

Berolo, E.

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

Bertsch, G. F.

M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
[Crossref]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

Bian, Y.

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

Binfeng, Y.

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Boardman, A.

A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).

Bobb, D. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Bolger, P. M.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

Boltasseva, A.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull 37, 768–779 (2012).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today (2014).
[Crossref]

Boreman, G.

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Boreman, G. D.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

Borisenko, V. E.

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

Bouhelier, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

Bouzaida, N.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Boyd, J. T.

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).

Bozhevolnyi, S.

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Bozhevolnyi, S. I.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 162676–2684 (2008).
[Crossref]

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Stanford Publishing, 2008).

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Breukelaar, I.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

Briggs, R. M.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

Bruce, D.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Bruck, R.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
[Crossref]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Buchwald, W.

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[Crossref]

Buchwald, W. R.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Burgos, S. P.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

Buthrath, N.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).

Callender, C. L.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Cartier, E. A.

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. Device Mater. Rel. 9, 147–162 (2009).

Caspers, J. N.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[Crossref]

Cassan, E.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Cerrina, F.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

Chang, W. H.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Charbonneau, R.

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

Chau, R.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

R. Chau, R. Arghavani, and M. Doczy, “Method for making a semiconductor devices having a high-k gate dielectric,” U.S. patent6,617,210 B1 (Sept.9, 2003), Intel Corp.

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Chen, H.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Chen, H. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, J.

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

Chen, L.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

Chen, L. J.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, S.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Chen, W.

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

Chen, X.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Chong, H.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

Chowdhury, R.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Chrisey, D. B.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Chu, H. S.

K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).

Claus, H.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Cleary, J. W.

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Collins, R. T.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Czanderna, A. W.

H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67,” J. Phys. Chem. 66, 816–821 (1962).
[Crossref]

Dabidian, N.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Dai, D.

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 1817958–17966 (2010).

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

Datta, S.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

Davoyan, A. R.

F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.

de Groot, C. H.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

de Lamaestre, R. E.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

de Leon, I.

I. de Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).

de Salva, B.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

de Salvo, B.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

Delacour, C.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Delaet, B.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Dereux, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).

des Francs, G. C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

Desiatov, B.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Devaux, E.

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

Dickson, W.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

Diest, K.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Dionne, J.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Divan, R.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Dobrzynski, L.

L. Dobrzynski and A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).

Doczy, M.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

R. Chau, R. Arghavani, and M. Doczy, “Method for making a semiconductor devices having a high-k gate dielectric,” U.S. patent6,617,210 B1 (Sept.9, 2003), Intel Corp.

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.

Dorman, J. A.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Doyle, B.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.

Drehman, A.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

Dressel, M.

M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
[Crossref]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Driedger, D.

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Durfee, C. G.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Dutta, S.

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).

Dwivedi, R. P.

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

Ebbesen, T.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Ebbesen, T. W.

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Edwards, B.

B. Edwards and N. Engheta, “Suspended MIM optical waveguides with optical nano-antennas,” in Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2014).

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

Ehrenreich, P.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Elezzabi, A. Y.

M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
[Crossref]

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

Emani, N.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Emboras, A.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

Engheta, N.

F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.

B. Edwards and N. Engheta, “Suspended MIM optical waveguides with optical nano-antennas,” in Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2014).

Erni, D.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Estakhri, N. M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Fafard, S.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Falk, A.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Fan, J. C. C.

J. C. C. Fan, “Preparation of Sn-doped In2O3 (ITO) fims at low deposition temperatures by ion-beam sputtering,” Appl. Phys. Lett. 34, 515–517 (1979).
[Crossref]

Fan, S.

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

Fasel, S.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Fedeli, J. M.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Fedoryshyn, Y.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

Ferrera, M.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

Flammer, P. D.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Fokonas, J. S.

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Forbes, L.

K. Y. Ahn and L. Forbes, “Highly reliable amorphous high-k gate dielectric ZrOXNY,” U.S. patent6,767,795 B2 (July27, 2004), Micron Technology, Inc.

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Frolich, A.

A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
[Crossref]

Fukui, K.

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films 203, 297–302 (1991).
[Crossref]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[Crossref]

Furtak, T. E.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Gao, D.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

Garcia, G.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Garcia-Meca, C.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

García-Vidal, F.

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Gavrilenko, A. V.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Gavrilenko, V. I.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Geffken, R.

R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” U.S. patent5,985,762 (Nov.16, 1999), International Business Machines Corporation.

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Giessen, H.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Gill, D. M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Ginzburg, P.

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

Gisin, N.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Glembocki, O. J.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

Gong, Q.

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

Gorjanc, T. C.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Gornik, E.

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Gosciniak, J.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

Goykhman, I.

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Grady, N. K.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Grandidier, J.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

Green, W.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Griessen, R.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Grosse, P.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Gruener, G.

M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
[Crossref]

Gu, D.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Gulbransen, E. A.

E. A. Gulbransen and W. S. Wysong, “Thin oxide films on aluminum,” J. Phys. Chem. 51, 1087–1103 (1947).
[Crossref]

Guler, U.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today (2014).
[Crossref]

Guo, L. J.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Guohua, H.

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
[Crossref]

Gwo, S.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Hafner, C.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Hahn, H.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Halas, H. J.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Halas, N. J.

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Hall, D. G.

B. N. Kurdi and D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988).
[Crossref]

D. G. Hall, “Survey of silicon-based integrated optics,” Computer 20, 25–32 (1987).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, Z.

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

Hao, F.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

Hassan, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

He, S.

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 1817958–17966 (2010).

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Heitzmann, M.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Hendrickson, J.

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
[Crossref]

Hibbins, A.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
[Crossref]

Hiller, J.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Hoessbacher, C.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Hollingsworth, R. E.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

Holmgaard, T.

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

Holmstrom, P.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Hong, Z.

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

Horst, F.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Horwitz, J. S.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

Hu, C.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Hua, J.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Hyun-Shik, L.

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

Ikonic, Z.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).

Irudayaraj, J. M. K.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Ishigami, M.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

Ishii, S.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

Ito, Y.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Jackson, H. E.

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).

Jacob, S.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Jeong, J. H.

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

Jeong, J. K.

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

Jeong, W. J.

W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Sol. Energy Mater. Sol. Cells 64, 37–45 (2001).

Jessop, P. E.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Jette-Charbonneau, S.

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

Jiang, J.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Jing, X.

Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).

Jo, M.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Jorel, C.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Ju, J.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Ju, J. J.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Jung, J.

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 162676–2684 (2008).
[Crossref]

J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).

Jung, K. Y.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kalavrouziotis, D.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Kamlapurkar, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Kang, K.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kavalieros, J.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.

Kawakami, A.

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

Kelaita, Y. A.

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Kelsall, R. W.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).

Kerber, A.

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. Device Mater. Rel. 9, 147–162 (2009).

Keshmiri, H.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

Khater, M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull 37, 768–779 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

Kiewra, E.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

Kildishev, A. V.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

Kim, H.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Kim, H. D.

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

Kim, J.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Kim, J. T.

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett. 23, 1481–1483 (2011).

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Kim, M.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kim, M.-s.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Kim, S. I.

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

Kimerling, L. C.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

Kinsey, N.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kjaer, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

Kjelstrup-Hansen, J.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

Knight, M. W.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Knights, A. P.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Kobayashi, T.

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

Kohl, M.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Komiyama, B.

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Koppens, F.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Koster, A.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Kovacs, G. J.

G. J. Kovacs, “Optical excitation of surface plasma waves in an indium film bounded by dielectric layers,” Thin Solid Films 60, 33–44 (1979).
[Crossref]

G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[Crossref]

G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. thesis (University of Toronto, 1977).

Kovacs, R.

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109, 053901 (2012).
[Crossref]

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

A. V. Krasavin and V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

Kreibig, U.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[Crossref]

Kriesch, A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

Krupin, O.

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

Kulkova, I. V.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

Kumar, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

Kurdi, B. N.

B. N. Kurdi and D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988).
[Crossref]

Kuwamura, Y.

Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[Crossref]

Kwok, W. K.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Kwon, M. S.

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393(2011).

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Lahoud, N.

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Laluet, J. Y.

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Lamond, R. J.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

Lardenois, S.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Larsen, M. S.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Laval, S.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Lavrinenko, A. V.

V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Lawrence, C.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
[Crossref]

Layadi, A.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Lee, E. H.

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

Lee, H.

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

Lee, M.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Lee, M.-H.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Lee, W.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

Lee, W. G.

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Leong, D.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Leosson, K.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Leroux, A.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

Leufke, P. M.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Leuthold, J.

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Levy, U.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[Crossref]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).

Li, B. H.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Li, D.

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-ingrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Li, W.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

Li, X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

Li, Z.

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

Lim, D. R.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

Lindenmann, N.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Ling, T.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liow, T. Y.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Lisicka-Shrzek, E.

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, X. X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Liu, Y.

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Liu, Z.

Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Lo, G. Q.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6  um,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).

Losego, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

Lu, M. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Lu, Y. J.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012).
[Crossref]

Luce, S.

R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” U.S. patent5,985,762 (Nov.16, 1999), International Business Machines Corporation.

Lukin, M.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Luo, Z.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Lynch, D. W.

D. McWilliams and D. W. Lynch, “Infrared reflectivities of magnesium silicide, germanide, and stannide,” Phys. Rev. Lett. 130, 2248–2252 (1963).

Ma, R.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

MacDonald, K.

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2009).

Maier, S. A.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malureanu, R.

V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Manipatruni, S.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

Maradudin, A.

I. Novikov and A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).

L. Dobrzynski and A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).

Maradudin, A. A.

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
[Crossref]

Maria, J. P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

Maria, J.-P.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Markey, L.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

Marti, J.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

Martinez, A.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

Martín-Moreno, L.

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

Maruyama, T.

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films 203, 297–302 (1991).
[Crossref]

Mashanovich, G.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Massenot, S.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Mattiussi, G.

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

Mayy, M.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Mazurski, N.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

McEnergy, K. R.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

McFaul, S.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

McWilliams, D.

D. McWilliams and D. W. Lynch, “Infrared reflectivities of magnesium silicide, germanide, and stannide,” Phys. Rev. Lett. 130, 2248–2252 (1963).

Mead, P.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Mehra, R. M.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

Melikyan, A.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Melosh, N. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Metz, M.

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

Migas, D. B.

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

Miglio, L.

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

Miller, D. J.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Milliron, D. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Mitomi, O.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).

Miyazawa, H.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).

Mo, Y. G.

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

Mollard, L.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Moreno, E.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Morimoto, A.

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Muskens, O. L.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Naik, G.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Najar, A.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Namavar, F.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

Nambiar, S.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

Narayan, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Naumaan, A.

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

Neubrech, F.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Ni, X.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Nielsen, M.

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

Nielsen, M. G.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

Nielsen, M. P.

M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
[Crossref]

Nielsen, R. B.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

Nikolajsen, T.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

Ning, C. Z.

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-ingrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
[Crossref]

Noad, J. P.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Noguchi, K.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).

Nordlander, P.

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

Novikov, I.

I. Novikov and A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Novotny, L.

L. Novotny, Principles of Nano-Optics (Cambridge University, 2012).

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Ocola, L. E.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Ooi, K. J. A.

K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).

Orenstein, M.

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

Orobtchouk, R.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Ortuno, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

Osofsky, M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Ou, J.-Y.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Ouyang, M.

Y. Tuang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[Crossref]

Pala, R. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Pan, H.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Papaioannou, S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Park, G. C.

W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Sol. Energy Mater. Sol. Cells 64, 37–45 (2001).

Park, H.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Park, J. S.

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

Park, S.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Park, S. K.

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Park, Y. J.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Pascal, D.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Patel, U.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Peale, R. E.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[Crossref]

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Peschel, U.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).

Pfadler, T.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Pfeifer, H.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Pickus, S. K.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Pique, A.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

Pleros, N.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Ploss, D.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Poizat, J. P.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Polman, A.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Pradhan, S.

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Pribil, G. K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Prokes, S. M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

Pu, M.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Py, C.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

Qadri, S. B.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Qiu, X.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Ramanov, S.

J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).

Reano, R. M.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
[Crossref]

Reed, G. T.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions,” IEE Proc. Optoelectron. 141, 391–393 (1994).

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Reinholm, C.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Renaud-Goud, P.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Rice, P.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Rickman, A.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

Rickman, A. G.

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions,” IEE Proc. Optoelectron. 141, 391–393 (1994).

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Robin, F.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Rodhammer, P.

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Rodrigo, S.

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

Rodrigo, S. G.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

Romestain, R.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Rosenberg, J.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Rotenberg, N.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[Crossref]

Roth, D.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Rowe, L.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

Salvador, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

Sambles, J.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
[Crossref]

Sámson, Z.

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Sanders, C. E.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Scales, C.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

Scharferling, M.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Schimmel, T.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Schmidt, B.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Schmidt-Mende, L.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Schow, C.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Schroeder, J. L.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Schuchinsky, A.

F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Scott, G. D.

G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[Crossref]

Sederberg, S.

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

Sepulveda, B.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shakya, J.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

Shalaev, V. M.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today (2014).
[Crossref]

Shalaginov, M. Y.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

Shank, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Shao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shaposhnikov, V. L.

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

Shappir, J.

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

Sheldon, M. T.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

Shelton, D.

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Shelton, D. J.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Shi, X.

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

Shi, Y.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Shih, C. K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Shimizu, K. T.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

Shin, J.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

Shin, J. S.

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

Shin, S. Y.

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

Shvets, G.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Singh, A. V.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

Singh, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Smith, C. W.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

Smith, D. W.

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

Snapp, N.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

So, J.-K.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Somesfalean, G.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Sommer, M.

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Søndergaard, T.

J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).

Song, J. H.

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

Soref, R.

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
[Crossref]

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Soref, R. A.

R. A. Soref, “Silicon-based optoelectroncis,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6  um,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).

Sorger, V. J.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Stegeman, G. I.

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
[Crossref]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Steinmuller-Nethl, D.

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

Stern, L.

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

Stockman, M.

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Strohfeldt, N.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Sugiyama, T.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).

Sulaev, A.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Sun, G.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

Sun, X.

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

Sweatlock, L. A.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

Tada, O.

Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[Crossref]

Tait, R.

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

Takahara, J.

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

Taki, H.

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

Tame, M. S.

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Tanaka, K.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Tanaka, M.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Tarr, N. G.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Teixeira, F. L.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
[Crossref]

Tekin, T.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Teshima, R.

A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).

Thomas, R.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).

Thoreson, M. D.

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

Thylen, L.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Timlin, H. A.

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

Tittl, A.

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

Tiwari, P.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Toh, S. K.

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

Topuria, T.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

Traviss, D.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

Tuang, Y.

Y. Tuang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Ulrich, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Uzawa, Y.

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

Van, V.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

van Driel, H. M.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Vergeles, S.

S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
[Crossref]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Veronis, G.

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

Villegier, J. C.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Vincze, P.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Vivien, L.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

Vo, T. P.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

Volkov, V.

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Volkov, V. S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Vonsovici, A.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Vorobev, P.

S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
[Crossref]

Vyrsokinos, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Wakahara, A.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

Waldow, M.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Walheim, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Wallis, R. F.

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).

Wang, C.

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Wang, C. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, G.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

Wang, G. P.

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).

Wang, I.

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

Wang, L.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, Y.

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Wang, Z.

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

Weeber, J.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

Weeber, J. C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

Wegener, M.

A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
[Crossref]

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

Weickert, J.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Weiss, B. L.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

Welp, U.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Wen, J.

J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).

Wieder, H.

H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67,” J. Phys. Chem. 66, 816–821 (1962).
[Crossref]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Wosinski, L.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

Wu, C.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Wu, D.

B. Yu and D. Wu, “Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation,” U.S. patent6,784,101 B1 (August31, 2004), Advanced Micro Devices Inc.

Wu, M.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

Wu, R. W.

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

Wu, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Wu, Y. K. R.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Wysong, W. S.

E. A. Gulbransen and W. S. Wysong, “Thin oxide films on aluminum,” J. Phys. Chem. 51, 1087–1103 (1947).
[Crossref]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

Xiao, L.

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

Xiao, Z. L.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Xin, X.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Xu, A.

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xu, H.

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

Xu, Q.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

Yamagishi, S.

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Yang, H. W.

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

Yao, N.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Ye, J.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Yiping, C.

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
[Crossref]

Yoshida, A.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

Yu, B.

B. Yu and D. Wu, “Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation,” U.S. patent6,784,101 B1 (August31, 2004), Advanced Micro Devices Inc.

Yu, C.

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

Yu, S. H.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Yue, S.

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

Yvind, K.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109, 053901 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).

Zayats, V.

A. V. Krasavin and V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[Crossref]

Zbinden, H.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

Zektzer, R.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

Zelmon, D. E.

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

Zenin, V. A.

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, C.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Zhang, M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Zhang, S.

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

Zhang, X.

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Zhao, D.

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Zhao, W.

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Zhao, X.

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhao, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

Zhao, Z.

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

Zheleva, T.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

Zheludev, N.

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Zheludev, N. I.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2009).

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

Zheng, C.

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

Zheng, Z.

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhou, L.

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

Zhou, T.

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

Zhu, J.

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).

Zhuo Ran, L.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Zimmermann, E.

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

ACS Nano (1)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

Adv. Mater. (3)

C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, “An ultrathin, smooth, and low-loss al-doped ag film and its application as a transparent electrode in organic photovoltaics,” Adv. Mater. 26, 5696–5701 (2014).
[Crossref]

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26, 6106–6110 (2014).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: beyond Gold and Silver,” Adv. Mater. 25, 3258–3294 (2013).
[Crossref]

Adv. Opt. Photon. (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).

Am. J. Phys. (1)

M. Dressel, G. Gruener, and G. F. Bertsch, “Electrodynamics of solids: optical properties of electrons in matter,” Am. J. Phys. 70, 1269–1270 (2002).
[Crossref]

Appl. Opt. (2)

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[Crossref]

Appl. Phys. Lett. (27)

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114 (2011).
[Crossref]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[Crossref]

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40  Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1278–1290 (1992).
[Crossref]

U. Patel, S. Avci, Z. L. Xiao, J. Hua, S. H. Yu, Y. Ito, R. Divan, L. E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D. J. Miller, and W. K. Kwok, “Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons,” Appl. Phys. Lett. 91, 162508 (2007).
[Crossref]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
[Crossref]

J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
[Crossref]

J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett. 91, 113505 (2007).
[Crossref]

J. C. C. Fan, “Preparation of Sn-doped In2O3 (ITO) fims at low deposition temperatures by ion-beam sputtering,” Appl. Phys. Lett. 34, 515–517 (1979).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low scattering graded index SiO2 planar optical waveguide thermally grown on silicon,” Appl. Phys. Lett. 42, 565–566 (1983).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. E. de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101, 251117 (2012).
[Crossref]

Can. J. Phys. (1)

G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[Crossref]

Computer (1)

D. G. Hall, “Survey of silicon-based integrated optics,” Computer 20, 25–32 (1987).
[Crossref]

ECS Trans. (1)

M. Abb, Y. Wang, D. Traviss, R. Bruck, C. H. de Groot, H. Chong, B. Sepulveda, and O. L. Muskens, “Plasmonics and metamaterials with transparent conducting oxides,” ECS Trans. 61, 291–298 (2014).

IEE Proc. Optoelectron. (1)

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions,” IEE Proc. Optoelectron. 141, 391–393 (1994).

IEEE Electron Device Lett. (1)

R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-K/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett. 25, 408–410 (2004).
[Crossref]

IEEE J. Lightwave Technol. (5)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 477–494 (2006).

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” IEEE J. Lightwave Technol. 31, 3361–3367 (2013).

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” IEEE J. Lightwave Technol. 30, 163–168 (2012).

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” IEEE J. Lightwave Technol. 16, 615–619 (1998).

IEEE J. Quantum Electron. (1)

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6  um,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).

IEEE J. Sel. Top. Quantum Electron. (4)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[Crossref]

IEEE Photon. J. (2)

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

IEEE Photon. Technol. Lett (2)

B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX structures,” IEEE Photon. Technol. Lett 3, 19–21 (1991).
[Crossref]

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photon. Technol. Lett 4, 633–635 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (5)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental Demonstration of Vertical Cu-SiO2-Si Hybrid Plasmonic Waveguide Components on an SOI Platform,” IEEE Photon. Technol. Lett. 24, 1224–1226 (2012).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett. 23, 1896–1898 (2011).

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett. 23, 1481–1483 (2011).

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21, 630–632 (2009).
[Crossref]

IEEE Trans. Device Mater. Rel. (1)

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. Device Mater. Rel. 9, 147–162 (2009).

J. Appl. Phys. (5)

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature,” J. Appl. Phys. 79, 7837–7842 (1996).

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Appl. Phys. 90, 5661–5665 (2001).

P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101, 113114 (2007).

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).

J. Electrochem. Soc. (1)

Z. Liu, X. Jing, and L. Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154, H500–H506 (2007).

J. Mod. Opt. (1)

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low loss glass thin film optical waveguides utilizing surface coating and laser annealing,” J. Opt. A Pure Appl. Opt. 52, 3873–3875 (1981).

J. Opt. A. (1)

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A. 7, S85–S89 (2005).

J. Opt. Soc. Am. B (2)

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
[Crossref]

J. Phys. Chem. (2)

H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67,” J. Phys. Chem. 66, 816–821 (1962).
[Crossref]

E. A. Gulbransen and W. S. Wysong, “Thin oxide films on aluminum,” J. Phys. Chem. 51, 1087–1103 (1947).
[Crossref]

J. Phys. Condens. Mat. (3)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Mat. 21, 144211 (2009).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Mat. 22, 095501 (2010).

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Mat. 22, 143201 (2010).

J. Phys. Soc. Jpn. (1)

Y. Kuwamura, M. Fukui, and O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[Crossref]

Laser Photon. Rev. (3)

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 1–14 (2013).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2009).

MRS Bull (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull 37, 768–779 (2012).
[Crossref]

Nano Lett. (16)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).

N. Strohfeldt, A. Tittl, M. Scharferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hybride nanoantennas for active plasmonics,” Nano Lett. 14, 1140–1147 (2014).

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).

V. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and H. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7, 2346–2350 (2007).

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plamsonic modulators,” Nano Lett. 9, 4403–4411 (2009).

A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, “Nanoscale plasmonic memristor with optical readout functionality,” Nano Lett. 13, 6151–6155 (2013).

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).

Nanophoton (2)

K. J. A. Ooi, P. Bai, and H. S. Chu, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophoton. 2, 13–19 (2013).

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton 1, 17–22 (2012).

Nat. Commun. (3)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power a thermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).

Nat. Mater. (4)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref]

Y. Tuang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Shao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (2)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[Crossref]

Nat. Photon (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[Crossref]

Nat. Photonics (11)

K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, and L. Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research,” Nat. Photonics 8, 669–672 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

J. S. Fokonas, H. Lee, Y. A. Kelaita, and H. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

I. de Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Nat. Phys. (2)

A. Falk, F. Koppens, C. Yu, K. Kang, N. Snapp, A. Akimov, M. Jo, M. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[Crossref]

M. S. Tame, K. R. McEnergy, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Nature (7)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

A. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2006).

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

New J. Phys. (2)

R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J. C. Villegier, and J. P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys. 6, 1–15 (2004).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Opt. Commun. (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[Crossref]

R. P. Dwivedi, L. Hyun-Shik, J. H. Song, S. An, and E. H. Lee, “Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects,” Opt. Commun. 284, 1418–1423 (2011).
[Crossref]

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[Crossref]

Opt. Eng. (1)

J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, and H. A. Timlin, “Guided wave optical structures utilizing silicon,” Opt. Eng. 24, 230–234 (1985).
[Crossref]

Opt. Express (46)

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

J. Wen, S. Ramanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 59255932 (2009).

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for devices applications,” Opt. Express 14, 314–319 (2006).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

S. Park, J. Ju, J. Kim, M. Kim, S. K. Park, J. Lee, W. Lee, and M. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[Crossref]

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs),” Opt. Express 22, 22009–22017 (2014).
[Crossref]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, A. Leroux, B. de Salva, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 2013612–13621 (2012).
[Crossref]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20, 3814–3824 (2012).
[Crossref]

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-ingrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
[Crossref]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[Crossref]

A. Kumar, J. Gosciniak, T. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 2972–2978 (2011).
[Crossref]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[Crossref]

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013).
[Crossref]

S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 19, 23494–23503 (2011).
[Crossref]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref]

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and Z. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22, 17930–17947 (2014).
[Crossref]

M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
[Crossref]

S. Belan, S. Vergeles, and P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320–8330 (2013).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 1896–1898 (2012).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref]

A. V. Krasavin and V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[Crossref]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[Crossref]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 1817958–17966 (2010).

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393(2011).

M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulatorsilicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express 20, 21875–21887 (2012).

Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610–3618 (2009).
[Crossref]

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009).

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005).

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 162676–2684 (2008).
[Crossref]

Opt. Lett. (14)

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[Crossref]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39, 4663–4666 (2014).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

A. Melikyan, M. Kohl, M. Sommer, C. Koos, W. Freude, and J. Leuthold, “Photonic-to-plasmonic mode converter,” Opt. Lett. 39, 3488–3491 (2014).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[Crossref]

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
[Crossref]

B. N. Kurdi and D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988).
[Crossref]

Opt. Mater. Express (3)

A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Optica (1)

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, D. Hillerkuss, A. Melikyan, M. Kohl, M. Sommer, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica, 1, 198–202 (2014).

Photon. Nanostr. Fundam. Appl. (3)

V. E. Babicheva, R. Malureanu, and A. V. Lavrinenko, “Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator,” Photon. Nanostr. Fundam. Appl. 5, 57–59 (2013).

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostr. Fundam. Appl. 10, 389–399 (2012).

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach–Zehnder plasmonic modulator,” Photon. Nanostr. Fundam. Appl. 10, 183–189 (2012).

Phys. Rev. (2)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. B (6)

L. Dobrzynski and A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).

I. Novikov and A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

A. Boardman, G. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).

J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).

Phys. Rev. Lett. (5)

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[Crossref]

D. McWilliams and D. W. Lynch, “Infrared reflectivities of magnesium silicide, germanide, and stannide,” Phys. Rev. Lett. 130, 2248–2252 (1963).

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109, 053901 (2012).
[Crossref]

Phys. Status Solidi B (1)

D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, “Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3, and Os2Ge3,” Phys. Status Solidi B 231, 171–180 (2002).
[Crossref]

Phys. Status Solidi RRL (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).

Proc. IEEE (1)

R. A. Soref, “Silicon-based optoelectroncis,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).

Proc. SPIE (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980(R) (2008).

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).

Science (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

Silicon (1)

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).

Small (1)

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7, 593–596 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Sol. Energy Mater. Sol. Cells 64, 37–45 (2001).

Thin Solid Films (5)

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films 203, 297–302 (1991).
[Crossref]

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetrong sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

G. J. Kovacs, “Optical excitation of surface plasma waves in an indium film bounded by dielectric layers,” Thin Solid Films 60, 33–44 (1979).
[Crossref]

D. Steinmuller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Z. Phys. (2)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Other (20)

G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. thesis (University of Toronto, 1977).

J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proc.1133 (2008).

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference (Optical Society of America, 2011), pp. 1–3.

L. Novotny, Principles of Nano-Optics (Cambridge University, 2012).

F. Abbasi, A. R. Davoyan, A. Schuchinsky, and N. Engheta, “Polarization-dependent one-way surface wave propagation,” in Conference on Lasers and Electro-optics (CLEO), 2014.

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” U.S. patent6,696,345 B2 (Feb.24, 2004), Intel Corp.

R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” U.S. patent5,985,762 (Nov.16, 1999), International Business Machines Corporation.

R. Chau, R. Arghavani, and M. Doczy, “Method for making a semiconductor devices having a high-k gate dielectric,” U.S. patent6,617,210 B1 (Sept.9, 2003), Intel Corp.

B. Yu and D. Wu, “Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation,” U.S. patent6,784,101 B1 (August31, 2004), Advanced Micro Devices Inc.

K. Y. Ahn and L. Forbes, “Highly reliable amorphous high-k gate dielectric ZrOXNY,” U.S. patent6,767,795 B2 (July27, 2004), Micron Technology, Inc.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today (2014).
[Crossref]

R. Kurzweil, “The law of accelerating returns,” http://www.kurzweilai.net/the-law-of-accelerating-returns (2001).

NCTA, Industry Data (National Cable & Telecommunications Association, 2014).

Intel Corporation, “Thunderbolt technology,” in Tech. Brief (2012).

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, and T. Barwicz, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEEE, 2012).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Stanford Publishing, 2008).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

B. Edwards and N. Engheta, “Suspended MIM optical waveguides with optical nano-antennas,” in Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2014).

A. Andryieuski, R. Malureanu, A. V. Lavrinenko, V. A. Zenin, V. S. Volkov, and S. I. Bozhevolnyi, “Plasmonic antennas nanocoupler for telecom range: simulation, fabrication and near-field characterization,” in Conference on Lasers and Electro-optics (CLEO), 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Graph illustrating the scaling of computational technologies over time. Integrated circuits represent the fifth generation of scaling. To continue the scaling into the future a new technology platform should be investigated. (Adapted from Moore’s Law: The Fifth Paradigm [1]).
Fig. 2.
Fig. 2. Performance figure of merit for integrated photonic and nanophotonic technologies in time. It can be seen that nanophotonics have reached a higher level of performance much quicker than photonics and are becoming competitive. Continual improvement in materials and geometries is expected to further increase the performance of both technologies, making them even more attractive for high-performance applications. For this comparison, photonics is represented by dielectric waveguides (using silicon or silicon dioxide for example), and nanophotonics is represented by insulator-metal-insulator strip plasmonic waveguides in a dielectric (using gold or silver, for example). References are listed forward in time by increasing performance.
Fig. 3.
Fig. 3. Graphical illustration of the explosion of new materials research in the area of nanophotonics. In the past, the traditional metals were the only materials used, but now nearly half of the periodic table has been utilized for nanophotonic applications in various spectral ranges.
Fig. 4.
Fig. 4. Depiction of the three basic plasmonic structures. Left: single interface with a half-space of metal and a half-space of dielectric. Middle: insulator-metal-insulator where the metal is confined to a thin strip embedded in a uniform dielectric medium. Right: metal-insulator-metal where a thin strip of dielectric is imbedded in a uniform metallic medium.
Fig. 5.
Fig. 5. Graphical depictions of the most widely used plasmonic waveguide geometries.
Fig. 6.
Fig. 6. General overview of the performances of nanophotonic waveguides based on traditional noble metals. The graph represents the device’s normalized propagation length (PL) in λ ’s versus normalized mode size (MS) in λ ’s. The chart encompasses insulator-metal-insulator (blue icons), metal-insulator-metal (purple icons), dielectric loaded (green icons), and hybrid plasmonic photonic (red icons) waveguides. Dots and triangles represent experimental and numerical evaluations, respectively. The line represents a figure of merit (PL/MS) value of 1000. References for the graph are given in order or decreasing propagation length for each geometry group.
Fig. 7.
Fig. 7. General overview of the performances of nanophotonic waveguides based on alternative and CMOS-compatible materials. The graph represents the devices normalized propagation length (PL) in λ ’s versus normalized mode size (MS) in λ ’s. The chart encompasses insulator-metal-insulator (blue icons), metal-insulator-metal (purple icons), dielectric loaded (green icons), and hybrid plasmonic photonic (red icons) waveguides. Dots and triangles represent experimental and numerical evaluations, respectively. The line represents a figure of merit (PL/MS) value of 1000. References for the graph are given in order or decreasing propagation length for each geometry group.
Fig. 8.
Fig. 8. General overview of noble-metal-based modulator performance. The graph represents the most fundamental trade-off for nanophotonic modulators, i.e., the device’s normalized extinction ratio ( dB / λ ) versus the normalized propagation loss ( dB / λ ) in the off-state or low-loss state. The chart reports electroabsorption (blue icons), Mach–Zehnder (green icons), and novel alternative scheme (red icons) modulators. Dots and triangles represent experimental and numerical evaluations, respectively. The line represents a figure of merit (ER/PL) value of 10. References for the graph are given in order or decreasing extinction ratio for each geometry group.
Fig. 9.
Fig. 9. General overview of alternative and CMOS-compatible material modulator performance. The graph represents the most fundamental trade-off for nanophotonic modulators, i.e., the device’s normalized extinction ratio ( dB / λ ) versus the normalized propagation loss ( dB / λ ) in the off-state or low-loss state. The chart reports electroabsorption (blue icons), Mach–Zehnder (green icons), and novel alternative scheme (red icons) modulators. Dots and triangles represent experimental and numerical evaluations, respectively. The line represents a figure of merit (ER/PL) value of 10. References for the graph are given in order or decreasing extinction ratio for each geometry group.

Tables (1)

Tables Icon

Table 1. Summary of Numerical Results for Strip and Gap Plasmonic Waveguides Using Alternative Materials a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k spp = k 0 ε m ε d ε m + ε d ,
k IMI k o ε d + ( t k o ε d / 2 ) 2 [ 1 ( ε d / ε m ) ] 2 ,
k MIM k o ε d + 1 2 ( k MIM 0 / k o ) 2 + ( ( k MIM 0 / k o ) 2 [ ε d ε m + 1 4 ( k MIM 0 / k o ) 2 ] ) 1 / 4 ,

Metrics