Abstract

Side coupling to core modes through zinc oxide (ZnO) nanorods grown around the fiber is demonstrated in this work. The scheme utilizes wet etching of the cladding region followed by hydrothermal growth of the nanorods. The combination of nanostructures and the optical fiber system is used to demonstrate a simple wide field of view (FOV) optical receiver. Core modes are excited by the light scattered in the region where the fiber core is exposed. The angular response of the receiver was tested using a nephlometer. Light coupling efficiency was extracted by deconvoluting the finite beam extinction from the measured power. The results were compared to a first-order analytical model in which the phase function is assumed to linearly shift with the incident angle. The trend of the experimental measurements agrees with the model. 180° FOV is verified, and maximum coupling efficiency of around 2.5% for a single fiber is reported. Excitation of core modes through side coupling shows potential for the application of these devices in optical receivers and sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods,” J. Cryst. Growth 311, 2549–2554 (2009).
    [CrossRef]
  2. B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).
  3. Z. Fan and J. G. Lu, “Zinc oxide nanostructure synthesis and properties and application,” J. Nanosci. Nanotechnol 5, 1561–1573 (2005).
    [CrossRef]
  4. Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. R 64, 33–71 (2009).
    [CrossRef]
  5. G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
    [CrossRef]
  6. A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
    [CrossRef]
  7. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Tech. Adv. Mater. 10, 013001 (2009).
  8. A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
    [CrossRef]
  9. M. Singh, T. Ohji, R. Asthana, and S. Mathur, eds. Ceramic Integration and Joining Technologies: From Macro to Nanoscale (Wiley, 2011).
  10. G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).
  11. Z. Wang, “Zinc oxide nanostructure synthesis and properties,” J. Phys.: Condens. Matter 16, R829–R858 (2004).
    [CrossRef]
  12. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20, 19404–19411 (2012).
    [CrossRef]
  13. A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
    [CrossRef]
  14. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20, 8472–8484 (2012).
    [CrossRef]
  15. M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).
  16. M. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, “Demonstration of side coupling light to cladding mode through ZnO nanorods grown on multimode optical fiber,” Opt. Lett. 38, 3620–3622 (2013).
    [CrossRef]
  17. L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
    [CrossRef]
  18. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19, 3592–3598 (2011).
    [CrossRef]
  19. P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
    [CrossRef]
  20. Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
    [CrossRef]
  21. J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
  22. W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).
  23. D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
    [CrossRef]
  24. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
  25. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chap. 3.

2013 (2)

Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
[CrossRef]

M. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, “Demonstration of side coupling light to cladding mode through ZnO nanorods grown on multimode optical fiber,” Opt. Lett. 38, 3620–3622 (2013).
[CrossRef]

2012 (3)

2011 (2)

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19, 3592–3598 (2011).
[CrossRef]

2010 (2)

D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
[CrossRef]

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

2009 (5)

S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods,” J. Cryst. Growth 311, 2549–2554 (2009).
[CrossRef]

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. R 64, 33–71 (2009).
[CrossRef]

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Tech. Adv. Mater. 10, 013001 (2009).

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).

2007 (3)

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

2005 (2)

Z. Fan and J. G. Lu, “Zinc oxide nanostructure synthesis and properties and application,” J. Nanosci. Nanotechnol 5, 1561–1573 (2005).
[CrossRef]

G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
[CrossRef]

2004 (2)

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Z. Wang, “Zinc oxide nanostructure synthesis and properties,” J. Phys.: Condens. Matter 16, R829–R858 (2004).
[CrossRef]

2001 (1)

W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).

2000 (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).

Ahmad, F.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Ahmad, H.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Ahmet, Y.

Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
[CrossRef]

Al-Hajry, A.

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

Andreev, A. T.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Anglos, D.

Antelius, M.

Armstrong, J.

Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
[CrossRef]

Atanasov, P. A.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Atanasova, G. B.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

Baruah, S.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Tech. Adv. Mater. 10, 013001 (2009).

S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods,” J. Cryst. Growth 311, 2549–2554 (2009).
[CrossRef]

Batumalay, M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Bharadwaj, P.

Bora, T.

Brown, D. M.

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).

Chaudhari, M.

Chen, B. J.

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Chen, H.

Cong, G. W.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Crouch, S. R.

D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.

Deng, P.

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

Deutsch, B.

Dikovska, A. O.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Dutta, J.

M. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, “Demonstration of side coupling light to cladding mode through ZnO nanorods grown on multimode optical fiber,” Opt. Lett. 38, 3620–3622 (2013).
[CrossRef]

S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods,” J. Cryst. Growth 311, 2549–2554 (2009).
[CrossRef]

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Tech. Adv. Mater. 10, 013001 (2009).

Fallah, M.

Fan, Z.

Z. Fan and J. G. Lu, “Zinc oxide nanostructure synthesis and properties and application,” J. Nanosci. Nanotechnol 5, 1561–1573 (2005).
[CrossRef]

Goossen, K. W.

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Gylfason, K. B.

Hahn, D. V.

Hahn, Y. B.

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

Harith, Z.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Harun, S. W.

M. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, “Demonstration of side coupling light to cladding mode through ZnO nanorods grown on multimode optical fiber,” Opt. Lett. 38, 3620–3622 (2013).
[CrossRef]

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Heider, D.

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Holler, F. J.

D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.

Hu, W. G.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Jeong, W.

W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).

Jiao, C. M.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Jivkova, S.

W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).

Kahn, J. M.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).

Karakoleva, E. I.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Kavehrad, M.

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).

Khasanah, M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Klini, A.

Konstantaki, M.

Lei, H.

Li, B.

Liu, X. L.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Liu, Y.

Lu, J. G.

Z. Fan and J. G. Lu, “Zinc oxide nanostructure synthesis and properties and application,” J. Nanosci. Nanotechnol 5, 1561–1573 (2005).
[CrossRef]

Masuda, Y.

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

Mohammed, W. S.

Nedyalkov, N. N.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

Nord, R. M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Novotny, L.

O’Brien, D. J.

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Park, W.

G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
[CrossRef]

Peng, W. Q.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Pissadakis, S.

Qiu, L.

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Rafaie, H. A.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Ribeiro, C.

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

Rolander, N. W.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chap. 3.

Skoog, D. A.

D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.

Sluz, J. E.

Sohlström, H.

Song, J.

Stefanov, P. K.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

Stoyanchov, T. R.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Sun, X. W.

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Tay, B. K.

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chap. 3.

Umar, A.

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

Venkat, R.

Wang, C.

G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
[CrossRef]

Wang, Q.

Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
[CrossRef]

Wang, Z.

Z. Wang, “Zinc oxide nanostructure synthesis and properties,” J. Phys.: Condens. Matter 16, R829–R858 (2004).
[CrossRef]

Wang, Z. G.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Wang, Z. L.

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. R 64, 33–71 (2009).
[CrossRef]

Wei, H. Y.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

West, D. M.

D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.

Wetzel, E. D.

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Wu, J. J.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Xu, C. X.

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Yi, G. C.

G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
[CrossRef]

Yuan, X.

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

Zafirova, B. S.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

Zeng, Y.

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

Zhang, P. F.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Zhang, Y.

Zhao, M.

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

Zhu, Q. S.

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “ZnO nanostructure grown on AIN/ sapphire substrates by MOCVD,” Appl. Phys. Lett. 24, 1738–1740 (2007).

Appl. Surf. Sci. (1)

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254, 1087–1090 (2007).
[CrossRef]

IEEE Trans. Commun. (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).

Int. J. Wirel. Inf. Netw. (1)

W. Jeong, M. Kavehrad, and S. Jivkova, “Broadband infrared access with a multi-spot diffusing configuration: performance,” Int. J. Wirel. Inf. Netw. 8, 27–36 (2001).

J. Cryst. Growth (1)

S. Baruah and J. Dutta, “pH-dependent growth of zinc oxide nanorods,” J. Cryst. Growth 311, 2549–2554 (2009).
[CrossRef]

J. Lightwave Technol (1)

Q. Wang, Y. Ahmet, and J. Armstrong, “Hemispherical lens based imaging receiver for MIMO optical wireless communications,” J. Lightwave Technol 31, 1744–1754 (2013).
[CrossRef]

J. Nanosci. Nanotechnol (1)

Z. Fan and J. G. Lu, “Zinc oxide nanostructure synthesis and properties and application,” J. Nanosci. Nanotechnol 5, 1561–1573 (2005).
[CrossRef]

J. Phys. Chem. C (1)

A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly C-axis-oriented ZnO nanorods of ZnO/glass substrate,” J. Phys. Chem. C 113, 14715–14720 (2009).
[CrossRef]

J. Phys.: Condens. Matter (1)

Z. Wang, “Zinc oxide nanostructure synthesis and properties,” J. Phys.: Condens. Matter 16, R829–R858 (2004).
[CrossRef]

Mater. Sci. Eng. R (1)

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. R 64, 33–71 (2009).
[CrossRef]

Opt. Eng. (2)

P. Deng, X. Yuan, M. Kavehrad, M. Zhao, and Y. Zeng, “Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications,” Opt. Eng. 51, 063002 (2012).
[CrossRef]

L. Qiu, K. W. Goossen, D. Heider, D. J. O’Brien, and E. D. Wetzel, “Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission,” Opt. Eng. 50, 094403 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Physica E (1)

B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, “Growth and characterization of zinc oxide nano/microfibers by thermal chemical reactions and vapor transport deposition in air,” Physica E 21, 103–107 (2004).

Sci. Tech. Adv. Mater. (1)

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Tech. Adv. Mater. 10, 013001 (2009).

Semicond. Sci. Technol (1)

G. C. Yi, C. Wang, and W. Park, “ZnO nanorods: synthesis, characterization and application,” Semicond. Sci. Technol 20, S22–S34 (2005).
[CrossRef]

Sens. Actuators A (1)

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nord, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators A 254, 1087–1090 (2007).

Sens. Actuators B (1)

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B 146, 331–336 (2010).
[CrossRef]

Other (3)

D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Brooks/Cole, 2003), Chap. 24.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chap. 3.

M. Singh, T. Ohji, R. Asthana, and S. Mathur, eds. Ceramic Integration and Joining Technologies: From Macro to Nanoscale (Wiley, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic view of the proposed optical antenna configuration. (b) Schematic representation of scattering of light from the ZnO nanorods through cladding and core modes of MMF. (c) Simulated response with the finite excitation beam effect.

Fig. 2.
Fig. 2.

(a) Calculated reduction of the peak power with normalized beam width. (b) Calculated change of the coupled power with the incident angle. The inset shows the measured phase function of the ZnO nanorods measured using an in-house built nephlometer.

Fig. 3.
Fig. 3.

Fiber diameter with respect to the etching time in hydrofluoric acid. The inset shows a stitched microscopic image for the transient region (note that the dimensions are not 11 for x and y axes).

Fig. 4.
Fig. 4.

SEM images of (a) uniform growth of ZnO nanorods on the optical fibers, (b) cross-sectional view of the optical fiber showing the growth thickness, (c) high magnification top view of the rods showing the profile and density, and (d) side view of the rods on the optical fiber showing the growth directionality.

Fig. 5.
Fig. 5.

Optical characterization setup for the side coupling in wet etched fibers coated with ZnO nanorods.

Fig. 6.
Fig. 6.

Light scattering through fiber from cladding mode to the core mode at different parts of fiber; transition region has highest peak. The images taken at the tip of the fibers are also shown in the figure. The captured images show high confinement in the cladding region and the core modes. The exponential decay of the power due to leakage of the core mode is also shown in the figure.

Fig. 7.
Fig. 7.

Measured power at the end of fiber coated with ZnO nanorods for different etching times versus the scanning distance. The inner graph shows the peak power versus etching time.

Fig. 8.
Fig. 8.

(a) In-house built nephlometer to measure the angular response of one fiber with ZnO nanorods attached to an optical detector used as an optical receiver. (b) Measured normalized coupling power (to 90° incident) versus incident angle. Dashed line shows the theoretically calculated coupling power. The inner graph shows polar plot of the normalized coupled power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Pout(z,θ)=Po,claddExp(2αs(θ)(zz1))×u(zz1)+Po,coreExp(2αs(θ)(zz2))×u(zz2)+P.
Po=2πPsourceCscρaθcπp(θθinc)sinθdθ,
αs=Cscρa/Lrod,
Pout(z,θ)=P1+P2+P,Pi=Po,ie2μ(ξξi)+μ2(1+erf(ξξiμ))/2,i=1,2,μ=α·σ,ξ=z/σ,
Psource=Plaser12erf(rσ),
ηideal=PpeakPsource×(Pfinite/Pideal).

Metrics