Abstract

Side coupling to core modes through zinc oxide (ZnO) nanorods grown around the fiber is demonstrated in this work. The scheme utilizes wet etching of the cladding region followed by hydrothermal growth of the nanorods. The combination of nanostructures and the optical fiber system is used to demonstrate a simple wide field of view (FOV) optical receiver. Core modes are excited by the light scattered in the region where the fiber core is exposed. The angular response of the receiver was tested using a nephlometer. Light coupling efficiency was extracted by deconvoluting the finite beam extinction from the measured power. The results were compared to a first-order analytical model in which the phase function is assumed to linearly shift with the incident angle. The trend of the experimental measurements agrees with the model. 180° FOV is verified, and maximum coupling efficiency of around 2.5% for a single fiber is reported. Excitation of core modes through side coupling shows potential for the application of these devices in optical receivers and sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating

Maria Konstantaki, Argyro Klini, Demetrios Anglos, and Stavros Pissadakis
Opt. Express 20(8) 8472-8484 (2012)

Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing

Yanjuan Liu, Yao Zhang, Hongxiang Lei, Jingwei Song, Hui Chen, and Baojun Li
Opt. Express 20(17) 19404-19411 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription