Abstract

Fiber-based optical parametric oscillators (FOPOs) are an alternative to supercontinuum light sources for nonlinear optical microscopy. In nonlinear microscopy implementations such as stimulated Raman scattering and coherent anti-Stokes Raman scattering, the signal noise is proportional to the second or third order of the input intensity noise. It is not yet known how FOPO intensity noise levels compare with supercontinuum sources. We measure excess noise for a FOPO and a supercontinuum source as a function of input power and wavelength. We find that the FOPO sideband excess noise can be as low as 5 dB above the shot noise limit of 150dBc[Hz]1. This FOPO can reach excess noise levels 50 dB below that of spectral slices of supercontinuum output in a comparable spectral range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2013).
  2. C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [CrossRef]
  3. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
    [CrossRef]
  4. H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500  cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86, 121113 (2005).
    [CrossRef]
  5. H. Kano, “Molecular vibrational imaging of a human cell by multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum light source,” J. Raman Spectrosc. 39, 1649–1652 (2008).
    [CrossRef]
  6. Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).
  7. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37, 1652–1654 (2012).
    [CrossRef]
  8. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38, 4154–4157 (2013).
    [CrossRef]
  9. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
    [CrossRef]
  10. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
    [CrossRef]
  11. J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
    [CrossRef]
  12. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  13. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  14. L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
    [CrossRef]
  15. S. M. Kobtsev and S. V. Smirnov, “Coherent properties of super-continuum containing clearly defined solitons,” Opt. Express 14, 3968–3980 (2006).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2013 (1)

2012 (1)

2011 (1)

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

2008 (3)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

H. Kano, “Molecular vibrational imaging of a human cell by multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum light source,” J. Raman Spectrosc. 39, 1649–1652 (2008).
[CrossRef]

2006 (2)

S. M. Kobtsev and S. V. Smirnov, “Coherent properties of super-continuum containing clearly defined solitons,” Opt. Express 14, 3968–3980 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (2)

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500  cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86, 121113 (2005).
[CrossRef]

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

2004 (1)

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

2003 (3)

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Ames, J.

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Chen, J.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Chen, S.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Chen, W.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Chen, X.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Cheng, J.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Cheng, J. X.

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2013).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Corwin, K. L.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Côté, D.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Cundiff, S.

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Evans, C.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Fu, D.

Gaeta, A.

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ghosh, S.

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Goulart, C.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500  cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86, 121113 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

Herda, R.

Holtom, G. R.

Ji, M.

Kano, H.

H. Kano, “Molecular vibrational imaging of a human cell by multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum light source,” J. Raman Spectrosc. 39, 1649–1652 (2008).
[CrossRef]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500  cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86, 121113 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

Kobtsev, S. M.

Kong, L.

Lamb, E. S.

Lefrancois, S.

Lin, C.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

Potma, E.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Puoris’haag, M.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Qi, X.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Schneider, P.

Sharping, J. E.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Slipchenko, M. N.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Smirnov, S. V.

Tong, W.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Wadsworth, W. J.

Washburn, B. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Wei, H.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Windeler, R.

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

Wise, F. W.

Xie, X.

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Xie, X. S.

Yi, L.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Zach, A.

Zhai, Y.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Zhang, D.

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

Zhou, X.

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Phys. B (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

J. Ames, S. Ghosh, R. Windeler, A. Gaeta, and S. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500  cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86, 121113 (2005).
[CrossRef]

Y. Zhai, C. Goulart, D. Zhang, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, J. Cheng, and J. E. Sharping, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98, 191106 (2011).

J. Raman Spectrosc. (1)

H. Kano, “Molecular vibrational imaging of a human cell by multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum light source,” J. Raman Spectrosc. 39, 1649–1652 (2008).
[CrossRef]

Opt. Commun. (1)

L. Yi, X. Qi, W. Chen, J. Chen, X. Zhou, and X. Chen, “Enhancing the signal-to-noise ratio of optical frequency beating using open-loop photonic crystal fiber,” Opt. Commun. 281, 4081–4087 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

C. Evans, E. Potma, M. Puoris’haag, D. Côté, C. Lin, and X. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Trace of the RF power of a single sideband (signal) for high and low pump powers. The black line shows the noise power for 370 mW of pump power coupled into the system, and the red line shows 510 mW. Peaks are located at multiples of the laser repetition rate. Noise power between the peaks increases with pump power. It is important to note the reference level is necessarily low on the electrical spectrum analyzer (ESA) in order to resolve the background noise so the value at the peaks is not representative of the actual power.

Fig. 2.
Fig. 2.

(a) Diagram of the FOPO setup. (b) Traces of the FOPO tuning spectra. The pump is located at 1064 nm (right axis). Signal (S) and idler (I) are tuned about 985 and 1150 nm, respectively (left axis).

Fig. 3.
Fig. 3.

Trace of the full supercontinuum spectrum. Pump pulses are 500 fs at 1053 nm.

Fig. 4.
Fig. 4.

Traces of the noise signal for the two light sources: supercontinuum noise is represented by the blue line, and FOPO level is represented by the green line. The red line represents the instrument noise.

Fig. 5.
Fig. 5.

Excess noise of FOPO short sideband versus pump power of the short sideband. The excess noise decreases to a lower limit of 145dBc[Hz]1.

Fig. 6.
Fig. 6.

(a) Traces of long sideband spectra. (b) Excess noise of FOPO for long sideband spectrum traces. (c) Traces of short sideband spectra. (d) Excess noise of FOPO for short sideband spectrum traces. Red circles, blue triangles, and green squares represent measurements for three different cavity lengths of the FOPO.

Fig. 7.
Fig. 7.

(a) Traces of spectral slices of the supercontinuum spectrum. (b) Excess noise of supercontinuum for each slice of spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ICARS|χ(3)|Ip2IsL2sinc2(ΔkL2),
Excess Noise=(NPDCBN).

Metrics