Abstract

Cross-correlation frequency-resolved optical gating (XFROG) based on four-wave mixing (FWM) in a gas medium is shown to enable dispersion-free characterization of few-cycle mid-infrared (mid-IR) pulses tunable within a spectral range of more than two octaves. The FWM XFROG technique is used to measure spectra and pulse shapes, as well as to retrieve the phase of a few-cycle output of difference-frequency generation (DFG) tunable from 3 to 11 μm. With Ti:sapphire laser pulses used as a reference, this FWM process maps the entire tunability range of the DFG source, spanning over more than two octaves, onto a wavelength region of only 50 nm in the visible, allowing convenient XFROG measurements and revealing the reshaping of few-cycle mid-IR field waveforms by molecular rovibrational modes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).
  2. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
    [CrossRef]
  3. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
    [CrossRef]
  4. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
    [CrossRef]
  5. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
    [CrossRef]
  6. V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
    [CrossRef]
  7. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
    [CrossRef]
  8. J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition-rate femtosecond pulses from 8 to 18  μm,” Appl. Opt. 36, 5044–5047 (1997).
    [CrossRef]
  9. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20  μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
    [CrossRef]
  10. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
    [CrossRef]
  11. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20, 24741–24747 (2012).
    [CrossRef]
  12. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
    [CrossRef]
  13. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
    [CrossRef]
  14. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8  μJ at 100  kHz,” Opt. Lett. 35, 3204–3206 (2010).
    [CrossRef]
  15. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, “Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating,” Opt. Lett. 25, 1478–1480 (2000).
    [CrossRef]
  16. M. Tsubouchi and T. Momose, “Cross-correlation frequency-resolved optical gating for mid-infrared femtosecond laser pulses by an AgGaGeS4 crystal,” Opt. Lett. 34, 2447–2449 (2009).
    [CrossRef]
  17. A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, “Self-referenced spectral interferometry for ultrashort infrared pulse characterization,” Opt. Lett. 37, 2892–2894 (2012).
    [CrossRef]
  18. T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013).
    [CrossRef]
  19. Y. Nomura, Y.-T. Wang, T. Kozai, H. Shirai, A. Yabushita, C.-W. Luo, S. Nakanishi, and T. Fuji, “Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases,” Opt. Express 21, 18249–18254 (2013).
    [CrossRef]
  20. A. Verhoef, A. Mitrofanov, A. Zheltikov, and A. Baltuška, “Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses,” Opt. Lett. 34, 82–84 (2009).
    [CrossRef]
  21. J. Knorr, P. Rudolf, and P. Nuernberger, “A comparative study on chirped-pulse upconversion and direct multichannel MCT detection,” Opt. Express 21, 30693–30706 (2013).
    [CrossRef]
  22. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  23. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
    [CrossRef]
  24. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
    [CrossRef]

2013 (3)

2012 (5)

A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, “Self-referenced spectral interferometry for ultrashort infrared pulse characterization,” Opt. Lett. 37, 2892–2894 (2012).
[CrossRef]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
[CrossRef]

Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20, 24741–24747 (2012).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (2)

2007 (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
[CrossRef]

2001 (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
[CrossRef]

2000 (3)

1999 (1)

1997 (2)

J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition-rate femtosecond pulses from 8 to 18  μm,” Appl. Opt. 36, 5044–5047 (1997).
[CrossRef]

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

1978 (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

1975 (1)

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

Alisauskas, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Ališauskas, S.

Allan, G. R.

Andriukaitis, G.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Arpin, P.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Bakker, H. J.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Balciunas, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Baltuska, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Baltuška, A.

Bates, P. K.

Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Beddard, T.

Béjot, P.

Biegert, J.

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

Brown, C. T. A.

Brown, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Chalus, O.

Chen, M.-C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Chin, S. L.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
[CrossRef]

Divall, M.

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Forget, N.

Fraser, J. M.

Fuji, T.

Gaeta, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Grabielle, S.

Haché, A.

Hamm, P.

Hauri, C. P.

Hernandez-Garcia, C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Ishii, K.

Jaron-Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Kaindl, R. A.

Kaiser, W.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Kartashov, D.

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

Kasparian, J.

Knorr, J.

Kozai, T.

Krausz, F.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
[CrossRef]

Laubereau, A.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Loza-Alvarez, P.

Luo, C.-W.

Mitrofanov, A.

Momose, T.

Mücke, O. D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).

Murnane, M. M.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Nakanishi, S.

Noack, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

Nomura, Y.

Nuernberger, P.

Petrarca, M.

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

Plaja, L.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Popmintchev, D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

Pugzlys, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Pugžlys, A.

Reid, D. T.

Reimann, K.

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

Rudolf, P.

Schrauth, S. E.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Schunemann, P.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Shim, B.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

Shirai, H.

Shneider, M.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

Sibbett, W.

Thai, A.

Trisorio, A.

Tsubouchi, M.

Tsurumachi, N.

van Driel, H. M.

Verhoef, A.

Voronin, A.

Voronin, A. A.

Wang, D.

Wang, Y.-T.

Weiner, A. M.

Woerner, M.

Wolf, J.-P.

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Wurm, M.

Yabushita, A.

Zheltikov, A.

Zheltikov, A. M.

Appl. Opt. (1)

Appl. Sci. (1)

T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

J. Opt. A (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
[CrossRef]

Opt. Commun. (1)

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, “Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating,” Opt. Lett. 25, 1478–1480 (2000).
[CrossRef]

A. Verhoef, A. Mitrofanov, A. Zheltikov, and A. Baltuška, “Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses,” Opt. Lett. 34, 82–84 (2009).
[CrossRef]

M. Tsubouchi and T. Momose, “Cross-correlation frequency-resolved optical gating for mid-infrared femtosecond laser pulses by an AgGaGeS4 crystal,” Opt. Lett. 34, 2447–2449 (2009).
[CrossRef]

O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8  μJ at 100  kHz,” Opt. Lett. 35, 3204–3206 (2010).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, “Self-referenced spectral interferometry for ultrashort infrared pulse characterization,” Opt. Lett. 37, 2892–2894 (2012).
[CrossRef]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

Phys. Rev. A (1)

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Science (2)

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).
[CrossRef]

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Other (2)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diagram of the experimental setup. Ti:S, Ti:sapphire laser; MPA, multipass amplifier; OPA, optical parametric amplifier; DFG, difference-frequency generation; SP, sapphire plate, BC, BaF2 beam combiner; BFL, BaF2 lens; L, BK7 glass lenses; DL, tunable optical delay line, SPF, short-pass filter; PMT, photomultiplier tube; λ/2, half-wave plate; Spec, spectrometer; FWM, interaction region, where FWM takes place.

Fig. 2.
Fig. 2.

(a) Energy of the DFG output measured as a function of its central wavelength. The central wavelengths of the DFG signal and the signal field are shown by the lower and upper abscissa axes, respectively. (b) XFROG traces of the sum- and difference-frequency FWM signals recorded with 50-fs, 808-nm Ti:sapphire pulses used as a pump. The λp=404nm axis is shown by the dashed line. (c), (d) Spectral intensity (circles), spectral phase (dashed and dashed–dotted lines), temporal envelope (circles), and temporal phase (dashed and dashed–dotted lines) retrieved from sum-frequency (open circles and dashed–dotted lines) and difference-frequency (filled circles and dashed lines) XFROG traces.

Fig. 3.
Fig. 3.

(a), (b) FWM XFROG traces of the DFG output measured with λp=810nm along with (c), (d) the pulse envelopes (filled circles) and temporal phases (open circles) and (e), (f) spectra (filled circles) and spectral phases (open circles) retrieved from XFROG traces for the DFG output centered at 3.2 μm (a), (c), (e) and 10.7 μm (b), (d), (f).

Fig. 4.
Fig. 4.

(a) The FWM XFROG trace of the DFG output centered at 5.1 μm, measured with λp=810nm, along with (b) the pulse envelope (filled circles) and temporal phase (open circles), (c) the spectrum (filled circles), the spectral phase (open circles) retrieved from the XFROG trace, and (d) the cross-correlation trace of a sub-four-cycle pulse at 5.1 μm right at the output of the DFG crystal. (e) The FWM XFROG trace of the DFG output centered at 9.5 μm, measured with λp=810nm, along with (f) the pulse envelope (filled circles) and temporal phase (open circles) retrieved from the XFROG trace of this pulse.

Fig. 5.
Fig. 5.

(a), (b) FWM XFROG traces (on a logarithmic scale) of the DFG output measured with λp=810nm along with (c), (d) the pulse envelopes (solid line) and temporal phases (dashed line) retrieved from the XFROG traces for the DFG output centered at 4.3 μm (a), (c) and 6.2 μm (b), (d).

Metrics