Abstract

We demonstrate refractive index sensing using parallel tapered nano-slotted photonic-crystal nano-beam cavities with three-dimensional (3D) finite-difference time-domain (3D-FDTD) simulation. The electric field of the cavity mode is strongly concentrated in the slot region leading to a large light–matter overlap, which is expected to add a significant contribution to sensitivity, and thus we present high refractive-index sensitivity of more than 600nm/refractive index units. Additionally, the quality (Q)-factor in the proposed design is theoretically investigated, and through tapering the diameter of the pores outside the Bragg mirrors in nano-beam cavities and the width of the adjacent nano-slots, an optimal Q-factor of 11770 is obtained. A high figure of merit (FOM=4637) of the designed model has been obtained. We anticipate that this geometry is potentially an ideal platform for refractive-index based bio-sensing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef]
  2. W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
    [CrossRef]
  3. C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
    [CrossRef]
  4. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
    [CrossRef]
  5. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011).
    [CrossRef]
  6. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
    [CrossRef]
  7. K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012).
    [CrossRef]
  8. D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
    [CrossRef]
  9. J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
    [CrossRef]
  10. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).
  11. V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
    [CrossRef]
  12. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
    [CrossRef]
  13. T. Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 29, 698–703 (2012).
    [CrossRef]
  14. B. T. Tung, D. V. Dao, T. Ikeda, Y. Kanamori, K. Hane, and S. Sugiyama, “Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity,” Opt. Express 19, 8821–8829 (2011).
    [CrossRef]
  15. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  16. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [CrossRef]
  17. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  18. C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
    [CrossRef]
  19. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46, 5456–5460 (2007).
    [CrossRef]
  20. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
    [CrossRef]
  21. D. Dai and S. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009).
    [CrossRef]
  22. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
    [CrossRef]
  23. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
    [CrossRef]
  24. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
    [CrossRef]
  25. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
    [CrossRef]
  26. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).
  27. K. B. Gylfason, C. F. Carlborg, A. K. Zmierczak, F. Dortu, H. Sohlstrom, L. Vivien, C. A. Barrios, W. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
    [CrossRef]
  28. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
    [CrossRef]
  29. K. H. Yoon and M. L. Shuler, “Design optimization of nano-grating surface plasmon resonance sensors,” Opt. Express 14, 4842–4849 (2006).
    [CrossRef]
  30. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
    [CrossRef]
  31. M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
    [CrossRef]
  32. A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [CrossRef]
  33. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
    [CrossRef]
  34. I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express 19, 22462–22469 (2011).
    [CrossRef]
  35. Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).
  36. M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
    [CrossRef]
  37. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
    [CrossRef]
  38. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [CrossRef]
  39. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  40. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [CrossRef]
  41. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Ultracompact guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  42. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
    [CrossRef]
  43. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
  44. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011).
    [CrossRef]
  45. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011).
    [CrossRef]
  46. Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
    [CrossRef]

2013 (2)

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

2012 (8)

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

T. Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 29, 698–703 (2012).
[CrossRef]

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[CrossRef]

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012).
[CrossRef]

2011 (9)

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express 19, 22462–22469 (2011).
[CrossRef]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011).
[CrossRef]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

B. T. Tung, D. V. Dao, T. Ikeda, Y. Kanamori, K. Hane, and S. Sugiyama, “Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity,” Opt. Express 19, 8821–8829 (2011).
[CrossRef]

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011).
[CrossRef]

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

2010 (9)

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
[CrossRef]

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

K. B. Gylfason, C. F. Carlborg, A. K. Zmierczak, F. Dortu, H. Sohlstrom, L. Vivien, C. A. Barrios, W. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
[CrossRef]

J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
[CrossRef]

2009 (2)

D. Dai and S. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

2008 (7)

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).

2007 (3)

2006 (1)

2005 (1)

2004 (2)

2001 (1)

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Akahane, Y.

Alasaarela, T.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Albert, J.

Allsop, T.

Almeida, V. R.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

Asano, T.

Atlasov, J. F.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Baba, T.

Barrios, C. A.

Bauls, M.

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Beheiry, M. E.

Bennion, I.

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Bouwmeester, D.

Burgess, I. B.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Butte, K. A.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Carlborg, C. F.

Carlin, A.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Casquel, R.

Castiglia, J.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Caucheteur, C.

Chakravarty, S.

Chen, R. T.

Dai, D.

Dao, D. V.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Dharanipathy, G.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

di Falco, A.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

Diao, Z.

Ding, W.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Dortu, F.

Dulashko, Y.

Dündar, M. A.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Elezzabi, A. Y.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
[CrossRef]

Fan, S.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Forchel, A.

Frank, I. W.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Geh, M.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Gibson, R.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Gordon, R.

Grandjean, R.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Grepstad, J. O.

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Griol, A.

Gylfason, K. B.

Hagemeier, J.

Hajisalem, G.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Han, Z.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
[CrossRef]

Hane, K.

Hanson, R.

He, S.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

D. Dai and S. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009).
[CrossRef]

Heeres, E.

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Hendrickson, J.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Holgado, M.

Homyk, A.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Houdre, R.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Houdré, R.

Hu, D. J. J.

Hu, Y. H.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

Ikeda, T.

Illic, R.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Jágerská, J.

Ji, Y.

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

Jiang, L.

Joannopoulos, J. D.

Johansen, I. R.

Johnson, S. G.

Kamp, M.

Kanamori, Y.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Karouta, F.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Kaspar, P.

Kawasaki, K.

Kim, H.

Kita, S.

Krauss, T. F.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

Kuramochi, E.

Kutter, J. P.

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

Kwon, S. H.

Lai, W. C.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Lee, Y. H.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Levi, O.

Levrat, U.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Li, B.

Li, Z. Y.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Lim, J. L.

Lin, C.

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011).
[CrossRef]

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

Lipson, M.

Liu, V.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Lu, Y.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Mapps, D.

Maquieira, A.

Meng, Z. M.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Milenko, K.

Mogensen, K. B.

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

Mortensen, N. A.

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

Mukherjee, I.

Neal, R.

Noda, S.

Notomi, M.

Nötzel, R.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Nozaki, K.

Nunes, P. S.

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

O’Faolain, L.

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

Panepucci, R. R.

Pedro, V. G.

Petroff, P.

Pfaff, W.

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Rehman, S.

Roh, Y. G.

Rossbach, N.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Sar, T.

Säynätjoki, A.

M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012).
[CrossRef]

Scullion, M. G.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shao, L.

Shevchenko, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Shuler, M. L.

Shum, P. P.

Sindy, T.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Snchez, B.

Sohlstrm, H.

Sohlstrom, H.

Solgaard, O.

Song, B. S.

Stemme, G.

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Sudbø, A. S.

Sugiyama, S.

Sumetsky, M.

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Sünner, T.

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Tanabe, T.

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

Tang, K. Y.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Taniyama, H.

Thomas, N. L.

Thon, S.

Tian, H.

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

Tjerk, O.

Tong, W.

Trivino, V.

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Tsai, H.

Tung, B. T.

Van, V.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
[CrossRef]

van der Heijden, R. W.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

van Hovell, S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Vivien, L.

Vollmer, F.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Wang, B.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Wang, C.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Wang, M.

Wang, S.

Wang, X.

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011).
[CrossRef]

Wang, Y.

Webb, D. J.

Wei, H.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Wijngaart, W.

Windeler, R. S.

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Wolinski, T. R.

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

Wu, N.

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

Wuilpart, M.

Xiao, H.

Xu, Q.

Yang, D.

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

Yang, J.

Yang, Y.

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Yoon, K. H.

Zhang, H.

Zhang, T.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zheng, J.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

Zhong, X. L.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Zmierczak, A. K.

Zou, Y.

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (8)

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010).
[CrossRef]

Biosens. Bioelectron. (1)

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Opt. Express (17)

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

B. T. Tung, D. V. Dao, T. Ikeda, Y. Kanamori, K. Hane, and S. Sugiyama, “Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity,” Opt. Express 19, 8821–8829 (2011).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).

I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express 19, 22462–22469 (2011).
[CrossRef]

K. B. Gylfason, C. F. Carlborg, A. K. Zmierczak, F. Dortu, H. Sohlstrom, L. Vivien, C. A. Barrios, W. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
[CrossRef]

K. H. Yoon and M. L. Shuler, “Design optimization of nano-grating surface plasmon resonance sensors,” Opt. Express 14, 4842–4849 (2006).
[CrossRef]

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[CrossRef]

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012).
[CrossRef]

Sens. Actuators A (1)

D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013).
[CrossRef]

Sensors (1)

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010).
[CrossRef]

Other (1)

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the proposed photonic crystal nano-beam cavity. The structure is symmetric with respect to its center (symmetry axis indicated by red dotted line). On both sides of the cavity, each mirror is composed of a periodic and tapered section. The periodic mirror is made of NP holes (NP=2 in the figure). The taper is located on the periodic mirror side. a (360nm) is the center-to-center distance between the gratings (periodicity), wc is the length of cavity. wnb is the width of nano-beam. The thickness of nano-beam T=220nm. ri are the radius of the gratings that are tapered from center to both ends.

Fig. 2.
Fig. 2.

(a) Band structures of the TE-like band for the nano-beam cavity with six different hole radii r=140, 129, 118, 107, 85, and 63 nm, respectively. Unit cell geometries are shown in the inset. (b) Nano-beam bandadge frequency versus the nano-beam cavity hole radius ri.

Fig. 3.
Fig. 3.

Ey field distribution for the fundamental TE-like polarized light-wave in the xy plane obtained from 3D-FDTD simulation with different cavity lengths (wc) and nano-beam widths (wnb). (a) wc=274nm, wnb=432nm; (b) wc=310nm, wnb=396nm; (c) wc=310nm, wnb=468nm; (d) wc=346nm, wnb=432nm; (e) wc=310nm, wnb=432nm. (f) Ey field distribution along the dash line in (e), length unit, μm. (g) Ey field distribution for the fundamental TE-like polarized light-waves in the yz plane corresponding to (e).

Fig. 4.
Fig. 4.

3D-FDTD calculations for the resonant frequencies and Q-factor as a function of the number of unilateral air holes N (N=NP+NT, NP=2, NT is the number of tapered radius region).

Fig. 5.
Fig. 5.

Schematics of PTNS-PCNC that consists of multiple nano-beam with nano-slot separations. The structure is symmetric with respect to the center (mirror symmetry indicated by red dotted line). Nnb is the number of nano-beams, w is the center-to-center distance between the holes around the cavity. wnb is the width of single beams. wNs(j) is the width of the nano-slot between adjacent beams.

Fig. 6.
Fig. 6.

Result of FDTD calculations displaying the cavity resonant frequencies and quality factors Q as a function of (a) the width of nano-slot wNs (1) when Nnb=2; (b) the width of nano-slot wNs (2) based on wNs (1)=0.23a when Nnb=4.

Fig. 7.
Fig. 7.

FDTD simulation of Q factors in the PTNS-PCNCs as a function of the slot thickness.

Fig. 8.
Fig. 8.

(a) Normalized sensitivity (S/λ0) and Q-factors as a function of the number of nano-beams (Nnb). (b) The FOM as a function of the number of nano-beams (Nnb).

Fig. 9.
Fig. 9.

3D-FDTD simulation of the major field distribution profile (Ey) in the PTNS-PCNC. Here the number of Gaussian mirror segments N=14, with an additional seven mirrors on both ends of tapering section. The calculation Q-factor is 11770 and the S factor is 606nm/RIU. a=360nm, wnb=432nm, wc=310nm, T=220nm, wNs(1)=83nm, wNs(2)=76nm. Unit of the x/y axis is μm.

Fig. 10.
Fig. 10.

FDTD simulation of Q-factors considering the effect of fabrication roughness. A random distribution of hole radius offset from 5to5, 10to10, 15to15, and 20to20nm, respectively, are calculated. The cavity is immersed in an environment with a refractive index of 1.330.

Fig. 11.
Fig. 11.

Schematic diagram of the ridge waveguide used for the PTNS-PCNC sensor in/out coupling. The structure is symmetric with respect to the center.

Fig. 12.
Fig. 12.

(a) Transmission spectrum of PTNS-PCNC sensor from 3D-FDTD simulation. The simulation consists of three ridge waveguides extruding to three nano-slots, and the width of ridge waveguide wridge is 76, 83, and 76 nm, respectively. The thickness is kept at 220 nm. The length of ridge waveguide Lridge is 1.5 μm. The background refractive index is set as RI=1.330. A high Q of 11770 and near 100% transmission is obtained. (b) Shift of the resonant wavelength as the background index changes from RI=1.330 to RI=1.345.

Tables (1)

Tables Icon

Table 1. Comparison of Sensitivity, Q-Factor and FOM for Different Optical Sensing Systems

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FOM=S/Δλ,
Q=λ0/Δλ.
FOM=S·Q/λ0;

Metrics