Abstract

The theory of an experimentally feasible four-partite scheme for splitting and open-destination teleportation of an arbitrary two-qubit state is presented. In this scheme, the quantum channel is provided by a pair of four-qubit generalized (G) Bell-states, which are decomposable. We show that not all possible distributions of entangled qubits to four communicating parties result in successful open-destination teleportation. We theoretically prove that two Bell-state measurements performed by a sender result in splitting, distributing, and locking the two-qubit state among three different receivers. The complete details of the procedure for unlocking the shared two-qubit state and eventually regenerating it at the location of any one of the three receiving stations is theoretically analyzed. This unlocking and regeneration procedure consists of local operations and classical communication (LOCC) performed by the remaining two receivers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  2. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
    [CrossRef]
  3. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
    [CrossRef]
  4. A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979).
    [CrossRef]
  5. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
    [CrossRef]
  6. D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A 61, 042311 (2000).
    [CrossRef]
  7. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
    [CrossRef]
  8. Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
    [CrossRef]
  9. F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
    [CrossRef]
  10. X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
    [CrossRef]
  11. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
    [CrossRef]
  12. Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
    [CrossRef]
  13. S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008).
    [CrossRef]
  14. S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
    [CrossRef]
  15. S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
    [CrossRef]
  16. Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
    [CrossRef]
  17. W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
    [CrossRef]
  18. K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
    [CrossRef]
  19. S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
    [CrossRef]
  20. N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
    [CrossRef]
  21. W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
    [CrossRef]
  22. G. Rigolin, “Superdense coding using multipartite states,” arXiv:quant-ph/0407193 (2004).
  23. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
    [CrossRef]
  24. Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
    [CrossRef]
  25. P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel-part II (experimental),” J. Opt. Soc. Am. B (submitted).
  26. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  27. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
    [CrossRef]
  28. W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
    [CrossRef]
  29. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
    [CrossRef]
  30. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
    [CrossRef]
  31. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
    [CrossRef]
  32. Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
    [CrossRef]
  33. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [CrossRef]
  34. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  35. Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).
  36. Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
    [CrossRef]

2013 (1)

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

2011 (5)

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
[CrossRef]

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

2009 (3)

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

2008 (3)

S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).

2007 (2)

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
[CrossRef]

2006 (3)

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

2005 (4)

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

2004 (3)

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
[CrossRef]

2001 (1)

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

2000 (1)

D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A 61, 042311 (2000).
[CrossRef]

1999 (4)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1982 (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

1979 (1)

A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979).
[CrossRef]

An, N. B.

Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Bhatia, P. S.

P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel-part II (experimental),” J. Opt. Soc. Am. B (submitted).

Bourennane, M.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Bowen, W. P.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Briegel, H. J.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Chen, Y.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Cheung, C.-Y.

Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).

Choudhury, S. W.

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cleve, R.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Deng, F.-G.

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Gaertner, S.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

Gisin, N.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Goebel, A.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Gottesman, D.

D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A 61, 042311 (2000).
[CrossRef]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[CrossRef]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hou, K.

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

Imoto, N.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Jain, S.

S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Karlsson, A.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Karumanchi, S.

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

Koashi, M.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Kurtsiefer, C.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Lam, P. K.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Lance, A. M.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Li, C.

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, C.-Y.

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

Li, X.

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, X.-H.

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

Li, Y.

Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
[CrossRef]

Li, Y.-H.

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

Lin, Y. M.

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

Liu, G.-H.

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

Liu, J.-C.

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Lo, H.-K.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Ma, P.

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

Mair, A.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Man, Z.-X.

Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
[CrossRef]

Menon, J. V.

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

Muralidharan, S.

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
[CrossRef]

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

Nie, Y.-Y.

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Pan, J.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Pan, J. W.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Panigrahi, K.

S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
[CrossRef]

Panigrahi, P.

S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008).
[CrossRef]

Panigrahi, P. K.

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

Paul, N.

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

Peng, K.

Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Ralph, T. C.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

Rigolin, G.

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

G. Rigolin, “Superdense coding using multipartite states,” arXiv:quant-ph/0407193 (2004).

Sander, B. C.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

Sanders, B. C.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Sang, M.-H.

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

Schmid, C.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Schmiedmayer, J.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Shamir, A.

A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979).
[CrossRef]

Sheng, S.-Q.

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

Symul, T.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Tittel, W.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Trojek, P.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Tyc, T.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

Wagenknecht, C.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Weinfurter, H.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Xia, Y.-J.

Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
[CrossRef]

Xiong, K.-W.

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

Yang, T.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Yin, X. F.

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

Zbinden, H.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Zhan, Y.

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

Zhang, A.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Zhang, K.

Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
[CrossRef]

Zhang, L.

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Zhang, W.

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

Zhang, X.-Y.

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

Zhang, Z. J.

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

Zhang, Z.-J.

Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).

Zhang, Z.-Y.

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

Zhao, B.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Zhao, Z.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Zhou, H.

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, H.-Y.

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

Zhou, P.

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zukowski, M.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Zuo, X.-Q.

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

Zurek, W. H.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Commun. ACM (1)

A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979).
[CrossRef]

Eur. Phys. J. D (3)

F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007).
[CrossRef]

W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009).
[CrossRef]

Int. J. Theor. Phys. (1)

Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009).
[CrossRef]

J. Phys. A (1)

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

J. Phys. B (2)

X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).

Nat. Phys. (1)

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Nature (3)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[CrossRef]

Opt. Commun. (3)

S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011).
[CrossRef]

W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011).
[CrossRef]

Phys. Lett. A (1)

Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004).
[CrossRef]

Phys. Rev. A (9)

F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A 61, 042311 (2000).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Phys. Rev. Lett. (5)

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Quantum Inf. Process. (3)

N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011).
[CrossRef]

K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011).
[CrossRef]

Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011).
[CrossRef]

Other (3)

P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel-part II (experimental),” J. Opt. Soc. Am. B (submitted).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

G. Rigolin, “Superdense coding using multipartite states,” arXiv:quant-ph/0407193 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Four-partite scheme for splitting and open-destination teleportation of an arbitrary two-qubit state. In this scheme, Alice is the sender, and Bob, Charlie, and David are three receivers. Ten identical quantum particles are labeled as 1, 2, 3,…, 10. Two-qubit state to be split and teleported is stored in particles 1 and 2. G-Source-1 and G-Source-2 are two identical sources. Each of these two sources generates four particles, which are entangled with |g1 quantum correlation. Lines with arrows show the distribution of eight entangled particles from two sources to four different parties. BSM, Bell-state measurement.

Tables (3)

Tables Icon

Table 1. Summary of the Result of Four Bell-State Measurements and the Projected State of Two Destination Particles for Open-Destination Teleportation of Two-Qubit State from Sender Alice to Receiver Boba

Tables Icon

Table 2. Summary of the Result of Four Bell-State Measurements and the Projected State of Two Destination Particles for Open-Destination Teleportation of Two-Qubit State from Sender Alice to Receiver Charliea

Tables Icon

Table 3. Summary of the Result of Four Bell-State Measurements and the Projected State of Two Destination Particles for Open-Destination Teleportation of Two-Qubit State from Sender Alice to Receiver Davida

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

|ψ12=α|01|02+β|01|12+γ|11|02+δ|11|12.
|ψ3456g1=12{|03|04|05|06+|03|14|05|16+|13|04|15|06+|13|14|15|16}=(φ35(+))(ϕ46(+)),
|ψ78910g1=12{|07|08|09|010+|07|18|09|110+|17|08|19|010+|17|18|19|110}=(φ79(+))(ϕ810(+)).
φlm(±)=12{|0l|0m±|1l|1m}ψlm(±)=12{|0l|1m±|1l|0m}.
|ψ12|ψ3456g1=12{|ϕ13(+)|ψ2456A++|ϕ13()|ψ2456A+|ψ13(+)|ψ2456B++|ψ13()|ψ2456B},
|ψ2456A±=(α|02|05+β|12|05±γ|02|15±δ|12|15)(ϕ46(+)),
|ψ2456B±=(α|02|15+β|12|15±γ|02|05±δ|12|05)(ϕ46(+)).
|ψ2456A±|ψ78910g1=12{|ϕ27(+)|ψ4568910C±+|ϕ27()|ψ4568910D±+|ψ27(+)|ψ4568910E±+|ψ27()|ψ4568910F±},
|ψ2456B±|ψ78910g1=12{|ϕ27(+)|ψ4568910G±+|ϕ27()|ψ4568910H±+|ψ27(+)|ψ4568910I±+|ψ27()|ψ4568910J±},
|ψ4568910C±=[(α|05±γ|15)|09+(β|05±δ|15)|19](φ46(+))(ϕ810(+)),
|ψ4568910E±=[(α|05±γ|15)|19+(β|05±δ|15)|09](φ46(+))(ϕ810(+)),
|ψ4568910G±=[(α|15±γ|05)|09+(β|15±δ|05)|19](φ46(+))(ϕ810(+)),
|ψ4568910I±=[(α|15±γ|05)|19+(β|15±δ|05)|09](φ46(+))(ϕ810(+)).
2|ψ4568910C±=α[(|04|09)(|05|08)(|06|010)+(|04|09)(|05|18)(|06|110)+(|14|09)(|05|08)(|16|010)+(|14|09)(|05|18)(|16|110)]+β[(|04|19)(|05|08)(|06|010)+(|04|19)(|05|18)(|06|110)+(|14|19)(|05|08)(|16|010)+(|14|19)(|05|18)(|16|110)]±γ[(|04|09)(|15|08)(|06|010)+(|04|09)(|15|18)(|06|110)+(|14|09)(|15|08)(|16|010)+(|14|09)(|15|18)(|16|110)]±δ[(|04|19)(|15|08)(|06|010)+(|04|19)(|15|18)(|06|110)+(|14|19)(|15|08)(|16|010)+(|14|19)(|15|18)(|16|110)],
2|ψ4568910E±=α[(|04|19)(|05|08)(|06|010)+(|04|19)(|05|18)(|06|110)+(|14|19)(|05|08)(|16|010)+(|14|19)(|05|18)(|16|110)]+β[(|04|09)(|05|08)(|06|010)+(|04|09)(|05|18)(|06|110)+(|14|09)(|05|08)(|16|010)+(|14|09)(|05|18)(|16|110)]±γ[(|04|19)(|15|08)(|06|010)+(|04|19)(|15|18)(|06|110)+(|14|19)(|15|08)(|16|010)+(|14|19)(|15|18)(|16|110)]±δ[(|04|09)(|15|08)(|06|010)+(|04|09)(|15|18)(|06|110)+(|14|09)(|15|08)(|16|010)+(|14|09)(|15|18)(|16|110)],
2|ψ4568910G±=α[(|04|09)(|15|08)(|06|010)+(|04|09)(|15|18)(|06|110)+(|14|09)(|15|08)(|16|010)+(|14|09)(|15|18)(|16|110)]+β[(|04|19)(|15|08)(|06|010)+(|04|19)(|15|18)(|06|110)+(|14|19)(|15|08)(|16|010)+(|14|19)(|15|18)(|16|110)]±γ[(|04|09)(|05|08)(|06|010)+(|04|09)(|05|18)(|06|110)+(|14|09)(|05|08)(|16|010)+(|14|09)(|05|18)(|16|110)]±δ[(|04|19)(|05|08)(|06|010)+(|04|19)(|05|18)(|06|110)+(|14|19)(|05|08)(|16|010)+(|14|19)(|05|18)(|16|110)],
2|ψ4568910I±=α[(|04|19)(|15|08)(|06|010)+(|04|19)(|15|18)(|06|110)+(|14|19)(|15|08)(|16|010)+(|14|19)(|15|18)(|16|110)]+β[(|04|09)(|15|08)(|06|010)+(|04|09)(|15|18)(|06|110)+(|14|09)(|15|08)(|16|010)+(|14|09)(|15|18)(|16|110)]±γ[(|04|19)(|05|08)(|06|010)+(|04|19)(|05|18)(|06|110)+(|14|19)(|05|08)(|16|010)+(|14|19)(|05|18)(|16|110)]±δ[(|04|09)(|05|08)(|06|010)+(|04|09)(|05|18)(|06|110)+(|14|09)(|05|08)(|16|010)+(|14|09)(|05|18)(|16|110)].
|ψ4568910J+=122{|ϕ58(+)|ψ46910K++|ϕ58()|ψ46910L++|ψ58(+)|ψ46910M++|ψ58()|ψ46910N+},
|ψ46910K+=α[(|04|19)(|06|110)+(|14|19)(|16|110)]β[(|04|09)(|06|110)+(|14|09)(|16|110)]+γ[(|04|19)(|06|010)+(|14|19)(|16|010)]δ[(|04|09)(|06|010)+(|14|09)(|16|010)],
|ψ46910M+=α[(|04|19)(|06|010)+(|14|19)(|16|010)]β[(|04|09)(|06|010)+(|14|09)(|16|010)]+γ[(|04|19)(|06|110)+(|14|19)(|16|110)]δ[(|04|09)(|06|110)+(|14|09)(|16|110)].
|ψ46910K+=12{|ϕ610(+)(δ|04|09+γ|04|19β|14|09+α|14|19)+|ϕ610()(δ|04|09+γ|04|19+β|14|09α|14|19)+|ψ610(+)(β|04|09+α|04|19δ|14|09+γ|14|19)+|ψ610()(β|04|09+α|04|19+δ|14|09γ|14|19)}.
|ψ49=(δ|04|09+γ|04|19+β|14|09α|14|19).
|ψ49=(δ|04|09+γ|04|19+β|14|19α|14|09).
|ψ49=(α|04|09+β|04|19+γ|14|19+δ|14|09).
|ψ49=(α|04|09+β|04|19+γ|14|09+δ|14|19).

Metrics