Abstract

We numerically demonstrate the existence and robustness of the broadband optical transmission (BOT) effect in double-layer gratings (DLGs) with different longitudinal spacings and lateral displacements. For the two scenarios of large and ultrasmall longitudinal spacings, the different physical mechanisms by which BOT occurs through the gaps between the two layers are analyzed based on the surface charge densities. Besides the DLG structures, the robustness of the BOT phenomenon can also be extended to exist in multiple-layer gratings with more layers. This provides a highly controllable way to design novel devices, such as transparent multiple-layer metals, broadband metamaterials, and novel polarization filters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  6. L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  7. F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef]
  9. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
    [CrossRef]
  10. P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
    [CrossRef]
  11. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef]
  12. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  13. F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [CrossRef]
  14. X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
    [CrossRef]
  15. R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
    [CrossRef]
  16. A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
    [CrossRef]
  17. C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
    [CrossRef]
  18. N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
    [CrossRef]
  19. C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
    [CrossRef]
  20. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006).
    [CrossRef]
  21. K. Akiyama, K. Takano, Y. Abe, Y. Tokuda, and M. Hangyo, “Optical transmission anomalies in a double-layered metallic slit array,” Opt. Express 18, 17876–17882 (2010).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  24. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27, 2595–2604 (2010).
    [CrossRef]
  25. X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
    [CrossRef]

2012

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

2011

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

2010

X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

K. Akiyama, K. Takano, Y. Abe, Y. Tokuda, and M. Hangyo, “Optical transmission anomalies in a double-layered metallic slit array,” Opt. Express 18, 17876–17882 (2010).
[CrossRef]

L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27, 2595–2604 (2010).
[CrossRef]

2009

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

2008

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

2007

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006).
[CrossRef]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

2004

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

2001

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1995

Abe, Y.

Aguanno, G.

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Akiyama, K.

Akozbek, N.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

Alù, A.

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

Bloemer, M. J.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Bower, J. E.

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Carr, D. W.

Chan, H. B.

Chen, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Cirelli, R. A.

D’Aguanno, G.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

de Ceglia, D.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Ding, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Fan, R. H.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

Fan, Y. X.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Ferry, E.

Gao, F.

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gordon, R.

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Grann, E. B.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Hangyo, M.

Hu, Q.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

Huang, X. R.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Hugonina, J. P.

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Jiang, S. S.

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Klemens, F.

Kuipers, L.

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Kumar, L. K. S.

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Lalanne, P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, J.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Liu, H.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Liu, H. T.

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Liu, Y.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

Marcet, Z.

Mattiucci, N.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Miner, J.

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Moharam, M. G.

Moreno, E.

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Moreno, L. M.

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Pai, C. S.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pellerin, K. M.

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Pendry, J. B.

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Peng, R. W.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Pommet, D. A.

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Ren, F. F.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Rétif, C.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Scalora, M.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Shi, D. J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Smiet, C. B.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Takano, K.

Tanner, D. B.

Taylor, J. A.

Thio, T.

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Tokuda, Y.

Trimm, R.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

van Beijnum, F.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

van Exter, M. P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Vincenti, M. A.

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wang, B.

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Wang, H. T.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Wang, L.

Wang, M.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

Wang, Z.

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Woo, K.

Wu, Q. Y.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Zhang, X.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Zhang, Z. M.

Adv. Mater.

R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Phys. Rev. A

X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007).
[CrossRef]

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012).
[CrossRef]

N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Phys. Rev. Lett.

X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Surf. Sci. Rep.

P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic view of the DLG structures illuminated by a TM wave at incident angle θ.

Fig. 2.
Fig. 2.

Contour plots of transmission in the wavelength and incidence angle domains of SLGs. The white dashed line indicates the position of the BOT.

Fig. 3.
Fig. 3.

(a)–(f) Contour plots of transmission in the wavelength and incidence angle domains of DLGs at different longitudinal spacings and lateral displacements with the values indicated in each panel. The white dashed lines indicate the position of the BOT.

Fig. 4.
Fig. 4.

(a) and (b) Instantaneous charge distributions, (c) and (d) the absolute value of charge densities on the surfaces, and (e) and (f) the energy flux directions in DLGs with l=250nm in the BOT condition (λ=9μm and θ=78°) for longitudinal spacings of 200 nm (left column) and 30 nm (right column).

Fig. 5.
Fig. 5.

Charge densities on the surfaces of the left side (NC and FL) and the right side (DK and ME) between the gaps with d=30nm. The inset shows the phases of the charge densities.

Fig. 6.
Fig. 6.

(a)–(d) Contour plots of the transmission in the wavelength and incidence angle domains of the MLGs with different layers and longitudinal spacings, the values of which are indicated in each panel.

Metrics