Abstract

We develop an analytical approach to study the fundamentals of the resonant light emission of plasmonic crystals composed of lattices of plasmonic nanoparticles fed by coherent dipole emitters. Our theoretical approach leads to simple analytical expressions that elucidate the resonant mechanisms responsible for emission enhancement. We demonstrate that the emission can be efficiently controlled with localized plasmons, lattice surface modes, and Rayleigh anomalies, and discuss the interactions between these different contributions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling quantum dot emission by plasmonic nanoarrays

R. Guo, S. Derom, A. I. Väkeväinen, R. J. A. van Dijk-Moes, P. Liljeroth, D. Vanmaekelbergh, and P. Törmä
Opt. Express 23(22) 28206-28215 (2015)

Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas
Opt. Express 21(4) 4250-4262 (2013)

Controlling collective spontaneous emission with plasmonic waveguides

Ying Li and Christos Argyropoulos
Opt. Express 24(23) 26696-26708 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription