V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” J. Opt. Soc. Am. B 29, 1263–1269 (2012).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64(2), 39–44 (2011).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, “Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing,” Opt. Express 15, 10231–10246 (2007).

[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).

[CrossRef]

S. V. Zymovetz and P. I. Geshev, “Boundary integral equation method for analysis of light scattering by 2D nanoparticles,” Tech. Phys. 51, 291–296 (2006).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).

M. Born and E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1965).

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

S. V. Zymovetz and P. I. Geshev, “Boundary integral equation method for analysis of light scattering by 2D nanoparticles,” Tech. Phys. 51, 291–296 (2006).

[CrossRef]

G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins University, 1996).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley, 2001).

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[CrossRef]

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64(2), 39–44 (2011).

[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).

[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[CrossRef]

G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins University, 1996).

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).

[CrossRef]

M. Born and E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1965).

S. V. Zymovetz and P. I. Geshev, “Boundary integral equation method for analysis of light scattering by 2D nanoparticles,” Tech. Phys. 51, 291–296 (2006).

[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent wave by two cylinders near a flat boundary,” Europhys. Lett. 97, 10007 (2012).

[CrossRef]

P. E. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” J. Exp. Theor. Phys. 110, 193–198 (2010).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[CrossRef]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).

[CrossRef]

S. Y. Chou and D. Wei, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21, A60–A76 (2013).

[CrossRef]

E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, “Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing,” Opt. Express 15, 10231–10246 (2007).

[CrossRef]

O. V. Belai, L. L. Frumin, S. V. Perminov, and D. A. Shapiro, “Scattering of evanescent electromagnetic waves by cylinder near flat boundary: the Green function and fast numerical method,” Opt. Lett. 36, 954–956 (2011).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64(2), 39–44 (2011).

[CrossRef]

S. V. Zymovetz and P. I. Geshev, “Boundary integral equation method for analysis of light scattering by 2D nanoparticles,” Tech. Phys. 51, 291–296 (2006).

[CrossRef]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley, 2001).

G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins University, 1996).

E. D. Palik, ed. Handbook of Optical Constants of Solids, Vol. 1, 2 (Academic, 1998).

M. Born and E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1965).

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).