Abstract
We theoretically study infrared (IR)-driven high-order harmonic generation (HHG) assisted by attosecond pulses with a central energy above the atomic ionization threshold. We provide a clear physical picture for controlling HHG using the time delay between the attosecond pulses and the IR laser reported by Faria et al. [Phys. Rev. A 74, 053416 (2006)]. This physical picture also indicates that the combined attosecond pulses and IR laser can help resolve the dynamics of ionized electrons from time-dependent harmonic spectra. We present the quantum effect on HHG as an example. While leaving parent ions, ionized electrons can still emit harmonics in the semi-classically forbidden situation. The two-color excitation provides a practical method to observe the quantum effect experimentally. Furthermore, in our work, attosecond pulses and an IR field are considered with a realistic pulse shape, which shows a quantitatively important effect in controlling harmonic spectra. Accordingly, a guide to optimize the control capability for HHG is presented, and a method to determine the IR carrier-envelope phase based on the pulse-shape effect on the HHG is also proposed.
© 2013 Optical Society of America
Full Article | PDF ArticleOSA Recommended Articles
Peng-Cheng Li, Yuan-Xiang Jiao, Xiao-Xin Zhou, and Shih-I Chu
Opt. Express 24(13) 14352-14361 (2016)
Zhe Wang, Lixin He, Jianghua Luo, Pengfei Lan, and Peixiang Lu
Opt. Express 22(21) 25909-25922 (2014)
A. S. Emelina, M. Yu. Emelin, and M. Yu. Ryabikin
J. Opt. Soc. Am. B 32(12) 2478-2487 (2015)