Abstract

We report, for the first time to our knowledge, the use of graphene as a saturable absorber in an energy-scaled femtosecond Cr4+: forsterite laser. By incorporating a multipass cavity, the repetition rate of the original short resonator was reduced to 4.51 MHz, which resulted in the generation of 100 fs, nearly transform-limited pulses at 1252 nm with a peak power of 53 kW. To the best of our knowledge, this is the highest peak power obtained from a room-temperature, femtosecond Cr4+: forsterite laser mode locked with a graphene saturable absorber. The corresponding pulse energy was 5.3 nJ with only 24 mW of average output power. The saturation fluence and modulation depth of the GSA were measured to be 25μJ/cm2 and 0.74%, respectively. The nonlinear effects in the Cr4+: forsterite medium that limit further power scaling were also investigated by using different output couplers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [CrossRef]
  2. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
    [CrossRef]
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [CrossRef]
  4. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
    [CrossRef]
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [CrossRef]
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
    [CrossRef]
  7. A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
    [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [CrossRef]
  9. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
    [CrossRef]
  10. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011).
    [CrossRef]
  11. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
    [CrossRef]
  12. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
    [CrossRef]
  13. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef]
  14. V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
    [CrossRef]
  15. C. K. Sun, C. C. Chen, S. W. Chu, T. H. Tsai, Y. C. Chen, and B. L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
    [CrossRef]
  16. A. Sennaroglu, T. J. Carring, and C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
    [CrossRef]
  17. A. Seas, V. Petricevic, and R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50 fs pulses,” Opt. Lett. 18, 891–893 (1993).
    [CrossRef]
  18. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
    [CrossRef]
  19. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
    [CrossRef]
  20. Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
    [CrossRef]
  21. R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr : forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–1566 (2002).
    [CrossRef]
  22. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 2449–2451 (2008).
    [CrossRef]
  23. I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. A. Sennaroglu, “Energy scaling of a carbon nanotube saturable absorber mode-locked femtosecond bulk laser,” Opt. Lett. 37, 3555–3557(2012).
    [CrossRef]
  24. V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001).
    [CrossRef]
  25. H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “Low-threshold, 12 MHz, multipass-cavity femtosecond Cr4+: forsterite laser,” Laser Phys. 19, 281–284 (2009).
    [CrossRef]
  26. H. Cankaya, A. Sennaroglu, and S. Akturk, “Direct generation of 81 nJ pulses and external compression to a subpicosecond regime with a 4.9 MHz chirped-pulse multipass-cavity Cr(4+): forsterite oscillator,” Opt. Lett. 36, 1572–1574 (2011).
    [CrossRef]
  27. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
    [CrossRef]
  28. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
    [CrossRef]
  29. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [CrossRef]
  30. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
    [CrossRef]
  31. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
    [CrossRef]
  32. A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
    [CrossRef]
  33. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [CrossRef]
  34. A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).
  35. S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [CrossRef]
  36. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode-locking,” Opt. Lett. 17, 511–513 (1992).
    [CrossRef]

2013 (1)

2012 (5)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[CrossRef]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. A. Sennaroglu, “Energy scaling of a carbon nanotube saturable absorber mode-locked femtosecond bulk laser,” Opt. Lett. 37, 3555–3557(2012).
[CrossRef]

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

2011 (2)

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

2009 (4)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “Low-threshold, 12 MHz, multipass-cavity femtosecond Cr4+: forsterite laser,” Laser Phys. 19, 281–284 (2009).
[CrossRef]

2008 (4)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 2449–2451 (2008).
[CrossRef]

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

2004 (2)

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

2003 (1)

2002 (2)

V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr : forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–1566 (2002).
[CrossRef]

2001 (2)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

1997 (2)

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

1993 (2)

A. Seas, V. Petricevic, and R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50 fs pulses,” Opt. Lett. 18, 891–893 (1993).
[CrossRef]

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

1992 (3)

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

1985 (1)

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Acioli, L. H.

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Akturk, S.

Alfano, R. R.

An, J. H.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Angelow, G.

Bae, S.

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Balci, S.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Banerjee, S. K.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Baylam, I.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Cai, W. W.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Cankaya, H.

Carbone, F. E.

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

Carring, T. J.

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Chen, C. C.

Chen, Y. C.

Cho, W. B.

Choi, S. Y.

Chu, S. W.

Chudoba, C.

Cizmeciyan, M. N.

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Curl, R. F.

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Fujimoto, J. G.

H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “Low-threshold, 12 MHz, multipass-cavity femtosecond Cr4+: forsterite laser,” Laser Phys. 19, 281–284 (2009).
[CrossRef]

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
[CrossRef]

R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr : forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–1566 (2002).
[CrossRef]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode-locking,” Opt. Lett. 17, 511–513 (1992).
[CrossRef]

Gao, W. L.

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

Griebner, U.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Haus, H. A.

Heath, J. R.

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Heumen, E. V.

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Hong, B. H.

Huang, D.

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Ippen, E. P.

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
[CrossRef]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
[CrossRef]

Itatani, T.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Ivanov, A.

V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001).
[CrossRef]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Jung, I.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Kaertner, F. X.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[CrossRef]

Kim, J. W.

Kim, K.

Kim, S.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Kobayashi, K.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Kocabas, C.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Kong, A. J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Kowalevicz, A. M.

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
[CrossRef]

Kroto, H. W.

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Kuzmenko, A. B.

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Lee, S.

Li, X. S.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Lin, B. L.

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Lv, P.

Ma, J.

Mak, P.

Marel, A. D. D.

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Minkov, B. I.

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

Morgner, U.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Nah, J.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Nakagawa, T.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Obrien, S. C.

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Ozharar, S.

Pang, Y.

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Petricevic, V.

Petrov, V.

Piner, R.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Pollock, C. R.

Prasankumar, R. P.

Qian, L. J.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Rotermund, F.

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Ruane, M. F.

Ruoff, R. S.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Salihoglu, O.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Scheuer, V.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

Seas, A.

Sennaroglu, A.

Sennaroglu, A. A.

Shcheslavskiy, V.

V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001).
[CrossRef]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Smalley, R. E.

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Sugaya, T.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Sun, C. K.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Tang, D. Y.

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Torizuka, K.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Tsai, T. H.

Tschudi, T.

Tutuc, E.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Ulman, M.

Velamakanni, A.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Wang, J. Y.

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Wise, F.

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

Xie, G. Q.

Yakovlev, V. V.

V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001).
[CrossRef]

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Yang, D. X.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Yanovsky, V.

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

Yeom, D. I.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Yim, J. H.

Yu, H. H.

Yuan, P.

Zhang, H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Zhang, H. J.

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Zhang, Z. G.

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Appl. Phys. B (1)

V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[CrossRef]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004).
[CrossRef]

Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

Laser Phys. (1)

H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “Low-threshold, 12 MHz, multipass-cavity femtosecond Cr4+: forsterite laser,” Laser Phys. 19, 281–284 (2009).
[CrossRef]

Nano Lett. (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008).
[CrossRef]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Nature (3)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985).
[CrossRef]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[CrossRef]

Opt Lett (1)

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993).
[CrossRef]

Opt. Lett. (13)

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
[CrossRef]

C. K. Sun, C. C. Chen, S. W. Chu, T. H. Tsai, Y. C. Chen, and B. L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef]

A. Sennaroglu, T. J. Carring, and C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef]

A. Seas, V. Petricevic, and R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50 fs pulses,” Opt. Lett. 18, 891–893 (1993).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[CrossRef]

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
[CrossRef]

D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode-locking,” Opt. Lett. 17, 511–513 (1992).
[CrossRef]

H. Cankaya, A. Sennaroglu, and S. Akturk, “Direct generation of 81 nJ pulses and external compression to a subpicosecond regime with a 4.9 MHz chirped-pulse multipass-cavity Cr(4+): forsterite oscillator,” Opt. Lett. 36, 1572–1574 (2011).
[CrossRef]

R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr : forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–1566 (2002).
[CrossRef]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 2449–2451 (2008).
[CrossRef]

I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. A. Sennaroglu, “Energy scaling of a carbon nanotube saturable absorber mode-locked femtosecond bulk laser,” Opt. Lett. 37, 3555–3557(2012).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Other (1)

A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Measured Raman spectrum of the GSA.

Fig. 2.
Fig. 2.

Variation of the fractional transmission change at 1250 nm as a function of delay for the single-layer GSA during time-resolved pump-probe measurements.

Fig. 3.
Fig. 3.

Measured variation of the transmission at 1250 nm as a function of the pump fluence for the single-layer GSA.

Fig. 4.
Fig. 4.

Experimental setup of the MPC Cr4+: forsterite laser containing the GSA.

Fig. 5.
Fig. 5.

Calculated variation of the beamwaist inside the crystal as a function of the distance between M15 and M16 (d1516) for two different values of d2x.

Fig. 6.
Fig. 6.

Power efficiency curves of the laser resonator with and without the GSA at two different output coupling levels (GSA, graphene saturable absorber; and OC, output coupler).

Fig. 7.
Fig. 7.

Mode-locked spectrum and collinear autocorrelation trace (inset) of the graphene mode-locked MPC Cr4+: forsterite laser with the 4.7% OC.

Fig. 8.
Fig. 8.

Mode-locked spectrum and collinear autocorrelation trace (inset) of the graphene mode-locked MPC Cr4+: forsterite laser with the 2.4% OC.

Fig. 9.
Fig. 9.

RF spectra of the graphene mode-locked MPC Cr4+: forsterite laser operated with (a) the 2.4% and (b) the 4.7% OC.

Fig. 10.
Fig. 10.

Measured CW output power of the composite Cr4+: forsterite laser (without the GSA) at the input pump power of 7.1 W as a function of the OC transmission.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E±=±νF|k|,
A=πα2.3%,
Wτp=1.76|D|λAeffπn2lg.
(PP)th=A(L+T)
(PP)th1(PP)th2=L1+T1L2+T2.
L2=L1+LGSA.
Pcr=aλ28πn0n2,

Metrics