Abstract

Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene, and ethylene is performed in the spectral range 2.5–5 μm using intracavity spectroscopy in broadband optical parametric oscillators (OPOs). The OPOs were operated near degeneracy and synchronously pumped either by a mode-locked erbium (1560 nm) or thulium (2050 nm) fiber laser. A large instantaneous bandwidth of up to 800cm1 allows for simultaneous detection of several gases. We observe an effective path-length enhancement due to coherent interaction inside the OPO cavity and achieve part-per-billion sensitivity levels. The measured spectral shapes are in good agreement with a model that takes into account group delay dispersion across the broad OPO frequency band.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
    [CrossRef]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [CrossRef]
  3. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [CrossRef]
  4. D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, “Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy,” Opt. Express 19, 24078–24089 (2011).
    [CrossRef]
  5. T. H. Risby and F. K. Tittel, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
    [CrossRef]
  6. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [CrossRef]
  7. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [CrossRef]
  8. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
    [CrossRef]
  9. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
    [CrossRef]
  10. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544(2004).
    [CrossRef]
  11. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
    [CrossRef]
  12. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
    [CrossRef]
  13. X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
    [CrossRef]
  14. A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
    [CrossRef]
  15. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
    [CrossRef]
  16. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
    [CrossRef]
  17. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
    [CrossRef]
  18. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
    [CrossRef]
  19. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [CrossRef]
  20. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
    [CrossRef]
  21. W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976).
    [CrossRef]
  22. K.-J. Boller, and T. Schröder, “Demonstration of broadband intracavity spectroscopy in a pulsed optical parametric oscillator made of β-barium borate,” J. Opt. Soc. Am. B 10, 1778–1784 (1993).
    [CrossRef]
  23. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
    [CrossRef]
  24. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
    [CrossRef]
  25. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
    [CrossRef]
  26. A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20, 7255–7262 (2012).
    [CrossRef]
  27. W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer, 2003).
  28. “The HITRAN database,” http://www.cfa.harvard.edu/HITRAN/ .
  29. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
    [CrossRef]
  30. M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.
  31. “Wikipedia,” http://en.wikipedia.org/ .
  32. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27, 876–882 (2010).
    [CrossRef]

2012 (2)

2011 (5)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
[CrossRef]

D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, “Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy,” Opt. Express 19, 24078–24089 (2011).
[CrossRef]

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
[CrossRef]

2010 (5)

2009 (3)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[CrossRef]

2008 (2)

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef]

2005 (2)

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

2004 (1)

2000 (1)

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

1999 (2)

L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

1993 (1)

1976 (1)

W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976).
[CrossRef]

Adler, F.

Arslanov, D. D.

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Balslev-Clausen, D.

Ban, T.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Bjork, B.

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Boller, K.-J.

Brehm, M.

Briles, T. C.

Brunner, W.

W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976).
[CrossRef]

Byer, R. L.

Cossel, K. C.

Cristescu, S. M.

Demtröder, W.

W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer, 2003).

Diddams, S. A.

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Didriche, K.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Esler, M. B.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

Fermann, M.

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[CrossRef]

M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.

Fermann, M. E.

Fleisher, A.

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Foltynowicz, A.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[CrossRef]

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Fox, R. W.

Gianfrani, L.

Gohle, C.

Griffith, D. W. T.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Harren, F. J. M.

Hartl, I.

Herman, M.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
[CrossRef]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544(2004).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Jiang, J.

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[CrossRef]

M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.

Kalashnikov, V. L.

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

Kassi, S.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Keilmann, F.

Kirchner, M. S.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Lauzin, C.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Leindecker, N.

Leindecker, N. C.

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

Mandon, J.

Marandi, A.

Maslowski, P.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[CrossRef]

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Paul, H.

W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976).
[CrossRef]

Pervak, V.

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Picqué, N.

Reid, D. T.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

Risby, T. H.

T. H. Risby and F. K. Tittel, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[CrossRef]

Rizopoulos, A.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Schliesser, A.

Schröder, T.

Schunemann, P. G.

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[CrossRef]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
[CrossRef]

Sorokin, E.

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
[CrossRef]

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef]

Sorokina, I. T.

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef]

Steele, L. P.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

Swinkels, K.

Thorpe, M. J.

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

Tittel, F. K.

T. H. Risby and F. K. Tittel, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[CrossRef]

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Vaernewijck, X. D. D.

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

van der Weide, D. W.

Vodopyanov, K. L.

Wilson, S. R.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

Wong, S. T.

Ye, J.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[CrossRef]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[CrossRef]

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Anal. Chem. (1)

M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef]

Appl. Phys. B (2)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

J. Opt. A (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

Mol. Phys. (1)

X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011).
[CrossRef]

Nat. Photonics (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Opt. Commun. (1)

W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976).
[CrossRef]

Opt. Eng. (1)

T. H. Risby and F. K. Tittel, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[CrossRef]

Opt. Express (8)

A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20, 7255–7262 (2012).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[CrossRef]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[CrossRef]

D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, “Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy,” Opt. Express 19, 24078–24089 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[CrossRef]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
[CrossRef]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[CrossRef]

Opt. Lett (1)

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[CrossRef]

Other (5)

W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer, 2003).

“The HITRAN database,” http://www.cfa.harvard.edu/HITRAN/ .

M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.

“Wikipedia,” http://en.wikipedia.org/ .

A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

For a broadband OPO to oscillate, it is necessary that for each comb line νs,m, the phase delay kL per round-trip is an integer multiple of 2π. Due to dispersion in the cavity, the round-trip phase (thick curve) is no longer a straight line. As a result, peripheral comb lines acquire extra phase, which prevents them from oscillating. Dashed vertical lines correspond to the alternative set of OPO comb lines shifted in frequency by frep/2. The frequency spacing between the comb lines is highly exaggerated for clarity.

Fig. 2.
Fig. 2.

Calculated extra phase per round-trip near OPO degeneracy (vertical dotted line, 96 THz, 3.12 μm) at different cavity round-trip lengths L near the optimum. The length steps between (a) and (b) and between (b) and (c) are 1.56 μm (λpump). Dispersion originating from a 0.5 mm PPLN, 2 mm ZnSe, and a dielectric mirror was taken into account. The cavity length is decreasing from (a) to (d).

Fig. 3.
Fig. 3.

In a broadband OPO, parametric gain at a given frequency is the result of cross coupling between large amounts of pump and OPO comb lines. Two such paths are shown.

Fig. 4.
Fig. 4.

When the round-trip phase differs from an integer times 2π, dispersive features of both signs appear in the molecular spectrum. (a) Calculated relative spectral intensity |A|2 near molecular resonance versus normalized frequency at Δϕ=0 and Δϕ=0.15. (b) Same at Δϕ=0 and Δϕ=0.15.

Fig. 5.
Fig. 5.

Schematic of the degenerate broadband OPO. The pump beam was introduced through the incoupling dielectric mirror DM. The other five mirrors are gold coated. A pair of wedges made of ZnSe (Er:fiber-pumped system) or CaF2 (Tm:fiber-pumped system) was used for (1) dispersion compensation and (2) beam outcoupling. The nonlinear crystal was AR-coated (PPLN) or placed at Brewster’s angle (OP-GaAs).

Fig. 6.
Fig. 6.

Output power of the Er:fiber-pumped OPO, with 0.8 mm PPLN, as a function of cavity length (round-trip) detuning.

Fig. 7.
Fig. 7.

Measured output spectra for the Er:fiber-pumped OPO using (a) 0.8 and (b) 0.5 mm PPLN. The spectra are shown for oscillation peaks Nos. 2–4 in (a) and peaks No. 1 and 4 in (b). Also shown (solid gray curves) are the theoretical PPLN parametric gain spectra for the two crystal lengths.

Fig. 8.
Fig. 8.

Measured spectrum for one oscillation peak for the Tm:fiber-pumped OPO. Also shown (gray curve) is the theoretical gain spectrum of the 500 μm OP-GaAs crystal.

Fig. 9.
Fig. 9.

(a) Measured (black) and calculated (gray) absorption spectra for 8.5 ppm methane in nitrogen at 1 atm pressure, corresponding to peak No. 4 in Fig. 6. The calculated spectrum is inverted and offset for clarity. (b) Phase shift Δϕ(ν), which was used for the calculation in (a).

Fig. 10.
Fig. 10.

(a) Measured (black) and calculated (gray) absorption spectra for 8.5 ppm methane in nitrogen at 1 atm pressure for an adjacent oscillation peak (peak No. 5 in Fig. 6), compared to Fig. 9. The calculated spectrum is inverted and offset for clarity. (b) Phase shift Δϕ(ν), which was used for the calculation in (a).

Fig. 11.
Fig. 11.

(a) Measured (black) and calculated (gray) absorption spectra for 56 ppm methane in nitrogen at 1 atm pressure. The calculated spectrum is inverted and offset for clarity. (b) Phase shift Δϕ(ν), which was used for the calculation in (a).

Fig. 12.
Fig. 12.

Measured absorption spectrum for ambient air (black curve) containing a methane peak. The HITRAN simulation for methane (solid gray curve) and the three simulated HITRAN water vapor peaks (dashed gray curve) are also shown. The effective path length is taken to be 8 times the round-trip length of the OPO cavity for the calculated spectra.

Fig. 13.
Fig. 13.

Measured (black) and calculated absorption spectra (gray) for 100 ppm formaldehyde in nitrogen at 1 atm pressure. The calculated spectra are offset and shown on an inverted scale for clarity. (a) Extracavity spectra and (b) intracavity spectra. The effective path length is taken to be six times the length of the gas cell for the calculated spectrum in (b).

Fig. 14.
Fig. 14.

(a) Showing reference intracavity spectrum (gray) and, underneath, the intracavity spectrum (black) with the absorption features present, while detecting methane and acetylene simultaneously inside the OPO. (b) Experimentally measured methane spectrum (black) at a concentration of 1.4 ppm and the corresponding calculated spectrum (gray). (c) Round-trip phase shift for the calculated methane spectrum. (d) Experimentally measured acetylene spectrum (black) at a concentration of 3.8 ppm and the corresponding calculated spectrum (gray). (e) Round-trip phase shift for the calculated acetylene spectrum. The calculated spectra in (b) and (d) are offset and shown on an inverted scale for clarity.

Fig. 15.
Fig. 15.

(a) Experimentally measured ethylene spectrum (black) at a concentration of 48 ppm and the corresponding calculated spectrum (gray). The calculated spectrum is inverted and offset for clarity. (b) Phase shift Δϕ(ν), which was used for the calculation in (a).

Fig. 16.
Fig. 16.

Measured (black) and calculated (gray) absorption spectra for 50 ppm carbon monoxide in helium at 1 atm pressure. The calculated spectrum is offset and shown on an inverted scale for clarity. The effective path length is taken to be seven times the length of the gas cell for the calculated spectrum.

Fig. 17.
Fig. 17.

Measured (black) and calculated (gray) molecular spectra of isotopic (CO132) carbon dioxide. The simulation is based on the HITRAN database and is inverted for clarity.

Tables (1)

Tables Icon

Table 1. Estimated Detection Limits

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

νi,l+νs,m=νp,n,
fCEO,s+fCEO,i=fCEO,p,
fCEO,s+fCEO,i=fCEO,p+frep.
fCEO,s=fCEO,p2,
fCEO,s=fCEO,p2+frep2.
A=tA+ΔA.
ddzA(νs,m)=iκνp,nνi,l=νp,nνs,mA(νp,n)A*(νi,l).
A=ΔA1t0t1ΔAδ0+δ1=ΔAδ0(1+δ1/δ0).
t1=exp(iδ1(ν0ν)/γ+i).
A=ΔA1t0t1ΔA1exp(δ0iΔϕiδ1(ν0ν)/γ+i).

Metrics