Abstract

A measurable magnetic (nonlocal) contribution to the second harmonic generation (SHG) of nonmagnetic materials is an intriguing issue related to chiral materials, such as biomolecules. Here we report the detection of an intensity-dependent optically induced magnetization of a chiral bacteriorhodopsin film under femtosecond pulse excitation (830 nm) and far from the material’s resonance. The analysis of the pump intensity-dependent noncollinear SHG signal, by means of the polarization map of normalized Stokes parameters, allows one to improve the detection of the nonlinear optical magnetization M(2ω) contribution to the SHG signal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Persoon, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1, 5–16 (2011).
    [CrossRef]
  2. T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).
  3. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
    [CrossRef]
  4. J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996).
    [CrossRef]
  5. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
    [CrossRef]
  6. M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
    [CrossRef]
  7. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
    [CrossRef]
  8. A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
    [CrossRef]
  9. M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
    [CrossRef]
  10. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
    [CrossRef]
  11. S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005).
    [CrossRef]
  12. S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), pp. 69–101.
  13. F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
    [CrossRef]
  14. T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
    [CrossRef]
  15. C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
    [CrossRef]
  16. R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
    [CrossRef]
  17. F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).
  18. M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
    [CrossRef]
  19. F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
    [CrossRef]
  20. D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
    [CrossRef]
  21. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
    [CrossRef]
  22. M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
    [CrossRef]
  23. Q. Wang Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
    [CrossRef]
  24. O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995).
    [CrossRef]
  25. Z. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19, 1409–1411 (1994).
    [CrossRef]
  26. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3, 205–271 (2011).
    [CrossRef]
  27. N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
    [CrossRef]
  28. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear optical response of planar G-shaped nanostructures,” Opt. Express 20, 8518–8523(2012).
    [CrossRef]
  29. M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
    [CrossRef]

2012

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear optical response of planar G-shaped nanostructures,” Opt. Express 20, 8518–8523(2012).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

2011

A. Persoon, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1, 5–16 (2011).
[CrossRef]

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3, 205–271 (2011).
[CrossRef]

2010

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

2009

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

2006

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

2005

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef]

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005).
[CrossRef]

2001

T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
[CrossRef]

1997

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
[CrossRef]

1996

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996).
[CrossRef]

1995

O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995).
[CrossRef]

1994

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

Z. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19, 1409–1411 (1994).
[CrossRef]

1993

1992

D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
[CrossRef]

1979

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[CrossRef]

Aktsipetrov, O. A.

Bamberg, E.

D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
[CrossRef]

Begue, N. J.

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

Belardini, A.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

Bertolotti, M.

Birge, R.

Birge, R. R.

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[CrossRef]

Bouevitch, O.

O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995).
[CrossRef]

Bovino, F. A.

Brasselet, S.

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3, 205–271 (2011).
[CrossRef]

Buatier de Mongeot, F.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Cattaneo, S.

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005).
[CrossRef]

S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), pp. 69–101.

Centini, M.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

Chiappe, D.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Clays, K.

T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).

Everly, M.

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

Fazio, E.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

Fischer, P.

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef]

Gergely, C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
[CrossRef]

Giardina, M.

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).

Giordano, M.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Gross, R.

Gross, R. B.

Hache, F.

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef]

Hall, V. J.

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

Haupert, L.

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

Kauranen, M.

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), pp. 69–101.

Kivshar, Y.

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

Kolmychek, I. A.

Ku, C. Y.

Lapine, M.

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

Larciprete, M. C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).

Lehaou, G.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

Lewis, A.

O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995).
[CrossRef]

Lozier, R. H.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[CrossRef]

Maki, J.

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996).
[CrossRef]

Maki, J. J.

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

Mamonov, E. A.

Martella, C.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Maydykovsky, A. I.

Moshchalkov, V. V.

Murzina, T. V.

Oesterhelt, D.

D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
[CrossRef]

Pannone, F.

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

Passaseo, A.

Persoon, A.

A. Persoon, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1, 5–16 (2011).
[CrossRef]

T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
[CrossRef]

Persoons, A.

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

Powell, D.

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

Rodriguez, V.

T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

Saab, M. B.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

Shadrivov, I.

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

Sibilia, C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).

Silhanek, A. V.

Simpson, G. J.

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

Sioncke, S.

T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
[CrossRef]

Song, Q. W.

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[CrossRef]

Tasco, V.

Thomson, D. H.

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

Tittor, J.

D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
[CrossRef]

Toma, A.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

Valev, V. K.

Varo, G.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

Váró, G.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
[CrossRef]

Verbiest, T.

E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear optical response of planar G-shaped nanostructures,” Opt. Express 20, 8518–8523(2012).
[CrossRef]

T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).

Wampler, R.

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

Wang Song, Q.

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

Zhang, C.

Zhang, Z.

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

Zhludev, N. I.

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

Zhou, M.

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

Zimányi, L.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
[CrossRef]

Adv. Opt. Photonics

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3, 205–271 (2011).
[CrossRef]

Appl. Phys. Lett.

M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010).
[CrossRef]

A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

Biochim. Biophys. Acta

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[CrossRef]

Chirality

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef]

J. Am. Chem. Soc.

R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006).
[CrossRef]

J. Bioenerg. Biomembr.

D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992).
[CrossRef]

J. Chem. Phys.

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994).
[CrossRef]

J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996).
[CrossRef]

J. Photochem. Photobiol. A

T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001).
[CrossRef]

J. Phys. Chem. B

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997).
[CrossRef]

J. Phys. Chem. C

N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009).
[CrossRef]

Nat. Commun.

M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012).
[CrossRef]

Opt. Commun.

O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005).
[CrossRef]

Phys. Rev. Lett.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006).
[CrossRef]

Sci. Rep.

M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011).
[CrossRef]

Other

T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).

S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), pp. 69–101.

F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup shows the pump light (red light) passing through L (optical lens), then split and delayed by a delay line device. The SHG signal (blue light) passes through a system of filters and quarter-wave plates then is split by a PBS (Thorlabs polarized beam splitter) and sent to SPCM1 (single photon counter—PerkinElmer AQ15) and SPCM2 through a fiber-coupling device. Beam stop S1 and S2 suppress the collinear SH signal. The inset shows details of the experimental geometry used for noncollinear SHG. For a given rotation angle α, the corresponding incidence angles of the two pump beams result to be α1=αβ and α2=αγ.

Fig. 2.
Fig. 2.

SHG as a function of the polarization state of the first pump beam (ϕ1) and the second pump beam (ϕ2). Sample rotation angle was fixed to α=40°. Experimental maps of SH signal intensity (count) are shown for different polarizations: (a) , (b) , (c) +45°, (d) 45°, (e) left polarization LC, and (f) right polarization RC.

Fig. 3.
Fig. 3.

Experimental maps, as a function of the polarization state of the first pump beam (ϕ1) and the second pump beam (ϕ2) of normalized Stokes parameters S˜1 (a), S˜2 (b), and S˜3 (c). The input power is 125 mW. Calculated maps S˜1 (d), S˜2 (e), and S˜3 (f) are obtained by using data listed in Table 1.

Fig. 4.
Fig. 4.

Experimental results showing the maximum SH signal intensity (count) as a function of the input pump power Pi (mW) for each polarization state (, , +45°, 45°, LC, and RC).

Fig. 5.
Fig. 5.

SHG as a function of the polarization state of the first pump beam (ϕ1) and the second pump beam (ϕ2) is shown. The experimental LC-polarized SH intensity (count) is presented changing the input pump power: (a) 125 mW, (b) 250 mW, and (c) 350 mW. The theoretically calculated maps (in arbitrary units) are shown in (d) 125 mW, (e) 250 mW, and (f) 350 mW, respectively. The theoretical maps are obtained by using nonlinear coefficients listed in Table 2.

Fig. 6.
Fig. 6.

Experimental results showing the S˜3 map as a function of the polarization state of the first pump beam (ϕ1) and the second pump beam (ϕ2), changing the input pump power: (a) 125 mW, (b) 250 mW, and (c) 350 mW.

Fig. 7.
Fig. 7.

Experimental results showing the ellipticity angle map, ranging from π/4 to π/4, as a function of the polarization state of the first pump beam (ϕ1) and the second pump beam (ϕ2), for different input pump power: (a) 125 mW, (b) 250 mW, and (c) 350 mW.

Tables (2)

Tables Icon

Table 1. Nonlinear Coefficients Retrieved at the Input Pump Power of 125 mWa

Tables Icon

Table 2. Magnetic Elements χmee at Different Power Levels of 125, 250 and 350 mWa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P⃗eff(2ω)=P⃗D(2ω)ik⃗Q⃗(2ω)1ωk⃗×M⃗(2ω),
Ipol(α)F(α)Pi1·Pi2e2(δ1+δ2)(χeffϕ1ϕ2pol(α))2,
χeffϕ1ϕ2pol(α)=(χeff(eee)pol)+(χeff(eem1)pol)+(χeff(eem2)pol)+(χeff(mee)pol),
S˜1(2ω,ϕ1,ϕ2)=Ip(2ω,ϕ1,ϕ2)Is(2ω,ϕ1,ϕ2)Ip(2ω,ϕ1,ϕ2)+Is(2ω,ϕ1,ϕ2)S˜2(2ω,ϕ1,ϕ2)=I+45°(2ω,ϕ1,ϕ2)I45°(2ω,ϕ1,ϕ2)I+45°(2ω,ϕ1,ϕ2)+I45°(2ωϕ1,ϕ2)S˜3(2ω,ϕ1,ϕ2)=IRC(2ω,ϕ1,ϕ2)ILC(2ω,ϕ1,ϕ2)IRC(2ω,ϕ1,ϕ2)+ILC(2ωϕ1,ϕ2),
I+45°(2ω,ϕ1,ϕ2)+I45°(2ω,ϕ1,ϕ2)=IRC(2ω,ϕ1,ϕ2)+ILC(2ω,ϕ1,ϕ2)=Ip(2ω,ϕ1,ϕ2)+Is(2ω,ϕ1,ϕ2).

Metrics