Abstract

The dielectric properties of Ag–Cu alloy films prepared by direct current magnetron sputtering were studied using variable angle spectroscopy ellipsometry. The dissipate loss of Ag–Cu alloy films was increased in the short wavelength (300–450 nm) with the increase of copper addition in silver alloys. The effective medium theory model was employed to characterize the surface roughness layer in the data simulation. Two typical peaks around 1.7 and 3.2 eV were presented for Ag–Cu alloys. The dielectric functions can be manipulated by the change of alloy composition and annealing temperature.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 11101 (2005).
    [CrossRef]
  3. Y. Q. Fu and X. L. Zhou, “Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).
    [CrossRef]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  5. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
    [CrossRef]
  6. V. M. Shalaev, “Transforming light,” Science 322, 384–386 (2008).
    [CrossRef]
  7. A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
    [CrossRef]
  8. R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708–1713 (2008).
    [CrossRef]
  9. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [CrossRef]
  10. N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
    [CrossRef]
  11. J. T. Song, H. Y. Li, J. Li, S. Y. Wang, and S. M. Zhou, “Fabrication and optical properties of metastable Cu–Ag alloys,” Appl. Opt. 41, 5413–5416 (2002).
    [CrossRef]
  12. J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
    [CrossRef]
  13. G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
    [CrossRef]
  14. G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
    [CrossRef]
  15. L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
    [CrossRef]
  16. P. Durussel and P. Feschotte, “A revision of the binary system Ag–Pt,” J. Alloys Compd. 239, 226–230 (1996).
    [CrossRef]
  17. W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
    [CrossRef]
  18. P. Wissmann and H. Finzel, Electrical Resistivity of Thin Metal Films (Springer-Verlag, 2007).
  19. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley Inter-Science, 1999).
  20. R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
    [CrossRef]
  21. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  22. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry(William Andrew, 2005).
  23. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
    [CrossRef]
  24. G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
    [CrossRef]
  25. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
    [CrossRef]
  26. S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
    [CrossRef]
  27. S. K. O’Leary, “An analytical density of states and joint density of states analysis of amorphous semiconductors,” J. Appl. Phys. 96, 3680–3686 (2004).
    [CrossRef]
  28. W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
    [CrossRef]
  29. L. R. RamMohan and P. A. Wolff, “Joint density of states in interband transitions in semiconductors in a magnetic field,” Phys. Rev. B 26, 6711–6718 (1982).
    [CrossRef]

2012 (1)

G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
[CrossRef]

2011 (2)

G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
[CrossRef]

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

2010 (4)

M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010).
[CrossRef]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

Y. Q. Fu and X. L. Zhou, “Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

2009 (1)

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

2008 (2)

2007 (2)

L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
[CrossRef]

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 11101 (2005).
[CrossRef]

2004 (1)

S. K. O’Leary, “An analytical density of states and joint density of states analysis of amorphous semiconductors,” J. Appl. Phys. 96, 3680–3686 (2004).
[CrossRef]

2002 (1)

2001 (1)

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1997 (2)

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

1996 (1)

P. Durussel and P. Feschotte, “A revision of the binary system Ag–Pt,” J. Alloys Compd. 239, 226–230 (1996).
[CrossRef]

1985 (1)

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

1982 (1)

L. R. RamMohan and P. A. Wolff, “Joint density of states in interband transitions in semiconductors in a magnetic field,” Phys. Rev. B 26, 6711–6718 (1982).
[CrossRef]

1977 (1)

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

1971 (1)

G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
[CrossRef]

Allen, J. W.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

Anagnostopoulos, G. F.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 11101 (2005).
[CrossRef]

Auer, S.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bacalis, N. C.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

Baida, F. I.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Barron, L. W.

L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bobb, D. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Bouhelier, A.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Buchwald, W. R.

Cao, H.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

Chen, K. P.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

Chen, W.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

Chernyak, L.

Clark, D.

Cleary, J.

Del Barco, E.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Durussel, P.

P. Durussel and P. Feschotte, “A revision of the binary system Ag–Pt,” J. Alloys Compd. 239, 226–230 (1996).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Enoch, S.

Feschotte, P.

P. Durussel and P. Feschotte, “A revision of the binary system Ag–Pt,” J. Alloys Compd. 239, 226–230 (1996).
[CrossRef]

Finzel, H.

P. Wissmann and H. Finzel, Electrical Resistivity of Thin Metal Films (Springer-Verlag, 2007).

Fu, Y. Q.

Y. Q. Fu and X. L. Zhou, “Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).
[CrossRef]

Gavrilenko, A. V.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

Gavrilenko, V. I.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

Guenneau, S.

Guntherodt, H. J.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Hahn, B. P.

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

Heinrich, H.

Henderson, J.

Huang, X.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

Huen, T.

G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
[CrossRef]

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Irani, G. B.

G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
[CrossRef]

Irene, E. A.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry(William Andrew, 2005).

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Jackson, W. B.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

Kadic, M.

Kelso, S. M.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

Kildishev, A. V.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

Kondrachova, L.

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

Kurinec, S. K.

L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Li, H. Y.

Li, J.

Lopatiuk, O.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 11101 (2005).
[CrossRef]

May, R. A.

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

Mayy, M.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

McGahan, W. A.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley Inter-Science, 1999).

Mead, P.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Neidrich, J.

L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
[CrossRef]

Noginov, M. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

O’Leary, S. K.

S. K. O’Leary, “An analytical density of states and joint density of states analysis of amorphous semiconductors,” J. Appl. Phys. 96, 3680–3686 (2004).
[CrossRef]

Oh, S. J.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

Papaconstantopoulos, D. A.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

Papanicolaou, N. I.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

Peale, R. E.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Ramirez, A. G.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

RamMohan, L. R.

L. R. RamMohan and P. A. Wolff, “Joint density of states in interband transitions in semiconductors in a magnetic field,” Phys. Rev. B 26, 6711–6718 (1982).
[CrossRef]

Rivory, J.

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

Santos, S.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

V. M. Shalaev, “Transforming light,” Science 322, 384–386 (2008).
[CrossRef]

Song, J. T.

Stevenson, K. J.

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

Sun, J. B.

G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
[CrossRef]

G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
[CrossRef]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Theiss, W.

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Thoreson, M. D.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley Inter-Science, 1999).

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry(William Andrew, 2005).

Tsai, C. C.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

Van Labeke, D.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Wan, W. J.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

Wang, S. Y.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Winningham, T. A.

Wissmann, P.

P. Wissmann and H. Finzel, Electrical Resistivity of Thin Metal Films (Springer-Verlag, 2007).

Wolff, P. A.

L. R. RamMohan and P. A. Wolff, “Joint density of states in interband transitions in semiconductors in a magnetic field,” Phys. Rev. B 26, 6711–6718 (1982).
[CrossRef]

Wooten, F.

G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
[CrossRef]

Yang, G.

G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
[CrossRef]

G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
[CrossRef]

Zhou, J.

G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
[CrossRef]

G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
[CrossRef]

Zhou, S. M.

Zhou, X. L.

Y. Q. Fu and X. L. Zhou, “Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).
[CrossRef]

Zhu, G.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97, 211107 (2010).
[CrossRef]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95, 151102 (2009).
[CrossRef]

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver–aluminum alloy thin films,” Appl. Phys. Lett. 99, 041116 (2011).
[CrossRef]

J. Alloys Compd. (1)

P. Durussel and P. Feschotte, “A revision of the binary system Ag–Pt,” J. Alloys Compd. 239, 226–230 (1996).
[CrossRef]

J. Appl. Phys. (4)

G. Yang, J. B. Sun, and J. Zhou, “Dielectric properties of aluminum silver alloy thin films in optical frequency range,” J. Appl. Phys. 109, 123105 (2011).
[CrossRef]

G. Yang, J. B. Sun, and J. Zhou, “Optical dielectric behaviors of copper zinc alloy thin films,” J. Appl. Phys. 111, 73103 (2012).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 11101 (2005).
[CrossRef]

S. K. O’Leary, “An analytical density of states and joint density of states analysis of amorphous semiconductors,” J. Appl. Phys. 96, 3680–3686 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

R. A. May, L. Kondrachova, B. P. Hahn, and K. J. Stevenson, “Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry,” J. Phys. Chem. C 111, 18251–18257 (2007).
[CrossRef]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (6)

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, and D. A. Papaconstantopoulos, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997).
[CrossRef]

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

G. B. Irani, T. Huen, and F. Wooten, “Optical properties of Ag and alpha-phase Ag–Al alloys,” Phys. Rev. B 3, 2385–2390 (1971).
[CrossRef]

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S. J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B 31, 5187–5198 (1985).
[CrossRef]

L. R. RamMohan and P. A. Wolff, “Joint density of states in interband transitions in semiconductors in a magnetic field,” Phys. Rev. B 26, 6711–6718 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Plasmonics (1)

Y. Q. Fu and X. L. Zhou, “Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).
[CrossRef]

Science (1)

V. M. Shalaev, “Transforming light,” Science 322, 384–386 (2008).
[CrossRef]

Surf. Sci. Rep. (1)

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Thin Solid Films (1)

L. W. Barron, J. Neidrich, and S. K. Kurinec, “Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions,” Thin Solid Films 515, 3363–3372 (2007).
[CrossRef]

Other (4)

P. Wissmann and H. Finzel, Electrical Resistivity of Thin Metal Films (Springer-Verlag, 2007).

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley Inter-Science, 1999).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry(William Andrew, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

SEM images of Ag–Cu alloy films with six different compositions: (a) Ag–4 at. %Cu, (b) Ag–7 at. %Cu, (c) Ag–17 at. %Cu, (d) Ag–20 at. %Cu, (e) Ag–26 at. %Cu, (f) Ag–29 at. %Cu.

Fig. 2.
Fig. 2.

SEM images of Ag–17 at. %Cu alloy films with variable annealing temperature: (a) room temperature, (b) 100°C, (c) 200°C, and (d) 300°C.

Fig. 3.
Fig. 3.

XRD patterns of the Ag–Cu alloy films with different content.

Fig. 4.
Fig. 4.

Grain size and lattice parameters of six different Ag–Cu alloy films.

Fig. 5.
Fig. 5.

XRD spectra of Ag–17 at. %Cu alloy films with changeable annealing temperature.

Fig. 6.
Fig. 6.

Resistivity of the deposited Ag–Cu alloy films with different concentration (left) and annealing temperature (right) for Ag–17 at. %Cu.

Fig. 7.
Fig. 7.

Model of dielectric simulation.

Fig. 8.
Fig. 8.

Experimental and fitted data, (a) Ψ and (b) Δ for deposited Ag–Cu alloy films with six different compositions.

Fig. 9.
Fig. 9.

Experimental and fitted data, (a) Ψ and (b) Δ for deposited Ag–17 at. %Cu alloy thin films with different annealing temperatures.

Fig. 10.
Fig. 10.

Real (a) and image (b) parts of dielectric functions of deposited Ag–Cu alloy films with the change of composition.

Fig. 11.
Fig. 11.

Dielectric functions of deposited Ag–17 at. %Cu alloy films with different annealing temperatures.

Fig. 12.
Fig. 12.

JDOS of Ag–17 at. %Cu alloy films with the change of annealing temperature.

Fig. 13.
Fig. 13.

JDOS of deposited Ag–Cu alloy films with different compositions.

Fig. 14.
Fig. 14.

Loss functions for the Ag–Cu alloy films.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fεmεeffεm+2εeff+(1f)εεeffε+2εeff=0,
ε=εbackgroundωp2ω2+iωγ+kωp,k2ω0,k2ω(ω+iωτ,k),

Metrics