Abstract

Traditionally, by means of full quantum theory, we present the intensity noise transfer function of an Er-doped fiber laser, on the basis of which we analyze the spectrum of the intensity noise. Our theoretical results are in agreement with the existing experiment results. This model explains not only how the noise is produced, but also how the spontaneous emission and dipole fluctuations have an effect on the output noise, which cannot be explained via rate equation theory. We analyze the physical sources of various contributions to the noise spectrum as well. The simulation results show that the noise of the Er-doped fiber laser mainly consists of the vacuum noise resulting from the output coupling, dipole fluctuation noise, the pump source intensity noise, and the spontaneous emission from the upper level to the ground level, which provides the theoretical basis for noise suppression. Compared to the solid laser, the Er-doped fiber laser shows lower resonant relaxation oscillation frequency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription