Abstract

The photoelastic constants of the alumina component in aluminosilicate optical fibers are evaluated and determined to be p11=0.237±0.020 and p12=0.027±0.012, thus confirming that the low and negative pij characteristics of bulk alumina are conserved as part of a binary aluminosilicate glass system in optical fiber form. In order to enumerate these values, the strain- and stress-optic coefficients of two fibers (one with an aluminosilicate core and one with a pure silica core) were measured by applying mechanical tension or twist, respectively, to the fibers and measuring changes to an optical system as a function of the mechanical deformation. In the former, the strain-optic coefficient (εOC) is measured directly by recording changes to the free spectral range of a ring fiber laser. In the latter, the stress-optic coefficient (σOC) is found by measuring the change in polarization angle after linearly polarized light propagates through a segment of twisted test fiber. To the best of our knowledge, this is the first such measurement of its type, i.e., the retrieval of the component photoelastic constants, with their signs, of a multicomponent glass. Binary glass compositions wherein the constituents have opposite signs of the photoelastic constant (such as the aluminosilicates) have the potential to give rise to extremely low values of the Brillouin gain coefficient.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef]
  2. P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
    [CrossRef]
  3. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
    [CrossRef]
  4. J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
    [CrossRef]
  5. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
    [CrossRef]
  6. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
    [CrossRef]
  7. P. Dragic, “SBS-suppressed, single mode Yb-doped fiber amplifiers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2009), poster session II (JThA10).
  8. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.
  9. P. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.
  10. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and antiguiding single mode optical fibers,” Opt. Express 17, 16225–16237 (2009).
    [CrossRef]
  11. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).
  12. P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012).
    [CrossRef]
  13. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
    [CrossRef]
  14. C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
    [CrossRef]
  15. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
    [CrossRef]
  16. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
    [CrossRef]
  17. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
    [CrossRef]
  18. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995).
    [CrossRef]
  19. H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
    [CrossRef]
  20. G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
    [CrossRef]
  21. P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009).
    [CrossRef]
  22. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
    [CrossRef]
  23. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
    [CrossRef]
  24. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef]
  25. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
    [CrossRef]
  26. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
    [CrossRef]
  27. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
    [CrossRef]
  28. A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
    [CrossRef]
  29. S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
    [CrossRef]
  30. P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
    [CrossRef]
  31. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [CrossRef]
  32. A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
    [CrossRef]
  33. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
    [CrossRef]
  34. A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983).
    [CrossRef]
  35. N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).
  36. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
    [CrossRef]
  37. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am Ceram. Soc. 80, 1919–1928 (1997).
    [CrossRef]
  38. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 87th ed. (CRC, 2006), pp. 12–161.

2012 (4)

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

2011 (4)

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
[CrossRef]

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

2010 (2)

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

2009 (4)

M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and antiguiding single mode optical fibers,” Opt. Express 17, 16225–16237 (2009).
[CrossRef]

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

2008 (1)

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

2007 (3)

J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

2006 (2)

N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

2003 (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
[CrossRef]

1997 (2)

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
[CrossRef]

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

1995 (1)

1992 (2)

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
[CrossRef]

H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

1990 (1)

G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
[CrossRef]

1988 (1)

A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

1984 (1)

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

1983 (1)

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983).
[CrossRef]

1979 (1)

1978 (1)

1972 (1)

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Asman, C. P.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

Ballato, A.

Ballato, J.

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995).
[CrossRef]

Barlow, A. J.

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983).
[CrossRef]

Bertholds, A.

A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Butter, C. D.

Canat, G.

J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
[CrossRef]

Cariou, J.-P.

J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
[CrossRef]

Carlson, C. G.

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Chen, X.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

Cheng, J.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Croteau, A.

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
[CrossRef]

Crowley, A. M.

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Dändliker, R.

A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Demeritt, J. A.

Dong, L.

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

Dragic, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.

P. Dragic, “SBS-suppressed, single mode Yb-doped fiber amplifiers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2009), poster session II (JThA10).

Dragic, P. D.

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
[CrossRef]

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
[CrossRef]

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
[CrossRef]

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009).
[CrossRef]

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
[CrossRef]

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Eilers, H.

H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Endou, T.

N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Friebele, E. J.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
[CrossRef]

Galvanauskas, A.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.

Gao, L.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Ghosh, S.

Gray, S.

Gu, R.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Hocker, G. B.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
[CrossRef]

Ihara, C.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Karapetyan, G. O.

G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
[CrossRef]

Kashima, N.

N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).

Kersey, A. D.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Komatsu, T.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

Laude, V.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Law, P.-C.

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012).
[CrossRef]

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
[CrossRef]

Li, M.-J.

Little, L. M.

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
[CrossRef]

Liu, A.

Liu, C.-H.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.

Liu, S.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Liu, Y.-S.

Maksimov, L. V.

G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
[CrossRef]

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Matusita, K.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Mermelstein, M. D.

Morris, S.

Munro, R. G.

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Papen, G. C.

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
[CrossRef]

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.

Paul, M. C.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983).
[CrossRef]

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Ross, R. B.

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

Ruffin, A. B.

Russell, P. St. J.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Schafer, J. M.

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

Simon, A.

Smith, R. G.

Snitzer, E.

Spring, J. B.

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

Stolen, R.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Strauss, E.

H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Thielen, P. A.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

Tritt, T. M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Ulrich, R.

Valla, M.

J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
[CrossRef]

Walton, D. T.

Wang, J.

Ward, B. G.

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

Weis, R. S.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
[CrossRef]

Wickham, M.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Yablon, A.

Yanush, O. V.

G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
[CrossRef]

Yen, W.

H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Yin, Z.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Yokota, R.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

Zenteno, L. A.

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

Zhang, L.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Int. J. Solids Struct. (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
[CrossRef]

J. Am Ceram. Soc. (1)

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984).
[CrossRef]

J. Appl. Phys. (2)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009).
[CrossRef]

J. Lightwave Technol. (4)

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990).
[CrossRef]

J. Opt. Commun. (1)

N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).

Microw. Opt. Technol. Lett. (1)

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012).
[CrossRef]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Opt. Eng. (1)

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011).
[CrossRef]

Opt. Express (2)

Opt. Mat. Express (1)

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
[CrossRef]

Opt. Mater. Express (2)

Phys. Rev. B (2)

H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011).
[CrossRef]

Proc. SPIE (3)

J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007).
[CrossRef]

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[CrossRef]

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992).
[CrossRef]

Other (4)

P. Dragic, “SBS-suppressed, single mode Yb-doped fiber amplifiers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2009), poster session II (JThA10).

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.

P. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 87th ed. (CRC, 2006), pp. 12–161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram providing the geometry of the system.

Fig. 2.
Fig. 2.

Experimental apparatus used to measure the εOC. The test fiber becomes part of the ring laser and any strain results in a measurable change in the cavity FSR.

Fig. 3.
Fig. 3.

RIP and compositional (EPMA) measurements for the aluminosilicate fiber used in this work. The absolute composition is found by dividing the refractive index by dn/d[Al] for the fiber (2.39×103 per mol. % Al2O3).

Fig. 4.
Fig. 4.

Change in FSR as a function of applied strain (points) for (a) pure silica fiber and (b) aluminosilicate fiber. The fits of Eq. (3) to the data also are shown (solid line). The slopes of the fitted lines are 166.0kHz/ε and 168.3kHz/ε for the pure silica and aluminosilicate fibers, respectively.

Fig. 5.
Fig. 5.

Measured polarization rotation as a function of the total applied twist to the fiber for (a) the pure silica core fiber and (b) the aluminosilicate core fiber. The modeling fits also are shown (solid line).

Fig. 6.
Fig. 6.

Calculated photoelastic constant, p12, as a function of alumina concentration in mole percent. The photoelastic constant goes to zero at approximately 88 mol. % Al2O3 in SiO2, a condition termed here as the ZEBRA condition.

Tables (2)

Tables Icon

Table 1. Basic Parameters of the Two Fibers Investigated as Part of this Work

Tables Icon

Table 2. Bulk Parameters Used to Calculate the Mode Index as a Function of Strain

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

m=M1M2ρ2[C1]ρ1+[C1](M1M2ρ2ρ1).
εOCeff,σOCeff=1n03(nAl2O33m(εOCAl2O3,σOCAl2O3)+nSiO23(1m)(εOCSiO2,σOCSiO2)),
ΔνESAM=MΔFSR=Mc(nl+NL)2(nl0+lQ)ε,
g=(n22)(p11p12),
p12=εOCeff+2νσOCeff12ν.

Metrics