Abstract

We present an cross-correlation frequency-resolved optical gating (XFROG) measurement of a megahertz IR supercontinuum generated in a step-index ZBLAN fiber. The resulting spectrogram gives the dispersion characteristics of the fiber and reveals that it has three zero-dispersion wavelengths. A comparison of the measured spectrogram with numerical simulations shows that this dispersion profile allows a notable dispersive-wave generation toward long wavelengths. Furthermore, the sum-frequency generation process in the XFROG measurement gives the possibility of measuring the IR light with fast Si-based detectors, such as CCD arrays.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqu, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [CrossRef]
  2. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [CrossRef]
  3. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [CrossRef]
  4. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, S. R. Keiding, and O. Bang, “ZBLAN supercontinuum generation—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  6. I. Kubat, C. Agger, M. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B30, 2743–2757 (2013).
    [CrossRef]
  7. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  8. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [CrossRef]
  9. S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
    [CrossRef]
  10. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
    [CrossRef]
  11. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
    [CrossRef]
  12. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [CrossRef]
  13. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
    [CrossRef]
  14. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [CrossRef]
  15. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834–1837 (1991).
    [CrossRef]
  16. K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
    [CrossRef]
  17. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
    [CrossRef]
  18. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright–bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6191 (2005).
    [CrossRef]
  19. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef]
  20. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations.” Opt. Lett. 19, 2065–2067 (1994).
    [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  22. X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29, 238–243 (2012).
    [CrossRef]
  23. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [CrossRef]
  24. J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci. 19, 21–41 (1989).
    [CrossRef]
  25. S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285, 2451–2455 (2012).
    [CrossRef]
  26. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]
  27. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. Shreenath, R. Trebino, and R. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]

2013 (1)

2012 (5)

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[CrossRef]

2009 (1)

2008 (2)

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqu, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

2006 (3)

2005 (1)

2004 (2)

2002 (4)

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

1994 (1)

1991 (1)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834–1837 (1991).
[CrossRef]

1989 (1)

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci. 19, 21–41 (1989).
[CrossRef]

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Andersen, T. V.

Bang, O.

Cantrell, C. D.

Coen, S.

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[CrossRef]

Dudley, J. M.

Dupont, S.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Falk, P.

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Freeman, M. J.

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
[CrossRef]

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Grischkowsky, D.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834–1837 (1991).
[CrossRef]

Gu, X.

Guelachvili, G.

Hansen, K. P.

Harde, H.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834–1837 (1991).
[CrossRef]

Herrmann, J.

Hilligsoe, K. M.

Hollenbeck, D.

Horak, P.

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Islam, M. N.

Johansen, M.

Kaivola, M.

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Keiding, S.

Keiding, S. R.

Kimmel, M.

Kito, C.

Kristiansen, R.

Kubat, I.

I. Kubat, C. Agger, M. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B30, 2743–2757 (2013).
[CrossRef]

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Kulkarni, O. P.

Kumar, M.

Larsen, J. J.

Lehtonen, M.

Liao, M.

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Ludvigsen, H.

Lyngsø, J. K.

Mandon, J.

Maze, G.

Miyoshi, S.

Mølmer, K.

Moselund, M. M.

I. Kubat, C. Agger, M. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B30, 2743–2757 (2013).
[CrossRef]

Moselund, P. M.

Nazarkin, A.

Nielsen, C. K.

O’Shea, P.

Ohishi, Y.

Parker, J. M.

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci. 19, 21–41 (1989).
[CrossRef]

Paulsen, H. N.

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[CrossRef]

Petersen, C.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[CrossRef]

Picqu, N.

Poletti, F.

Poulain, M.

Ramsay, J.

Rishøj, L.

Rottwitt, K.

Russell, P. S. J.

Shreenath, A.

Sørensen, S. T.

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285, 2451–2455 (2012).
[CrossRef]

Sorokin, E.

Sorokina, I. T.

Steffensen, H.

Suzuki, T.

Terry, F. L.

Thøgersen, J.

Thomsen, C. L.

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[CrossRef]

Trebino, R.

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Wetzel, B.

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285, 2451–2455 (2012).
[CrossRef]

Windeler, R.

Windeler, R. S.

Xia, C.

Xu, L.

Yan, X.

Zeek, E.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[CrossRef]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci. 19, 21–41 (1989).
[CrossRef]

Appl. Phys. B (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[CrossRef]

Opt. Commun. (1)

S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285, 2451–2455 (2012).
[CrossRef]

Opt. Express (7)

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[CrossRef]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
[CrossRef]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef]

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
[CrossRef]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright–bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6191 (2005).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834–1837 (1991).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (2)

I. Kubat, C. Agger, M. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B30, 2743–2757 (2013).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup. The generated SC is the sum frequency mixed with the 777 nm gate laser in a 1 mm thick LiIO3 crystal. The delay is controlled with a stage in the gate arm, and the crystal is rotated through 35° in order to sum the entire spectral range of the SC.

Fig. 2.
Fig. 2.

Intensity autocorrelation of the pump (blue) and the gate pulse (green). The time axis offset is introduced in order to separate the pulses. The dashed red line is a numerical autocorrelation of two 100 fs pulses separated by 0.6 ps on top of a 2 ps pulse.

Fig. 3.
Fig. 3.

Measured spectrogram of the ZBLAN SC generated at maximum input power.

Fig. 4.
Fig. 4.

Calculated dispersion of the ZBLAN fiber based on at 14th-order polynomial fit to the spectrogram. The dashed red line corresponds to zero dispersion.

Fig. 5.
Fig. 5.

Numerical evolution of a 1 ps pulse with peak power of 1.25 kW. The first three panels show spectrograms after 4.2 m (upper left), 8.0 m (upper right), and 11.2 m (lower left). The last image shows the spectral evolution, i.e., how each spectral component evolves as a function of the fiber length.

Fig. 6.
Fig. 6.

Numerical evolution of a 100 fs pulse with peak power of 8.5 kW. The left panel shows spectrogram after 2.9 m, and the right panel shows the spectral evolution.

Fig. 7.
Fig. 7.

Numerical modeling of the SC generation. An input pulse consisting of two femtosecond pulses and one picosecond pulse is used. See text for further detail. The insert is a scaled version of the spectrogram where the group delay based on the experimental spectrogram is plotted as the dotted black curve.

Fig. 8.
Fig. 8.

Histograms of 8500 consecutive pulses at three wavelengths: 1000 nm (upper left), 1950 nm (upper right), and 3200 nm (lower left). The lower right panel is the ratio between two PMTs at 3200 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β(ωs)ωsβ1,s+(1fR)γPs=β(ωDW)ωDWβ1,s,

Metrics