Abstract

A computational study on the efficient second-harmonic generation (SHG) in one-dimensional nonlinear photonic crystals (PhCs) is presented. The design requirements are specified in terms of the corresponding fundamental wavelength of the incident wave, at which the maximum conversion efficiency of SHG occurs. The computational approach has developed a Newton-type local optimization method to optimize the fill factor and the period of a PhC. An optimal structure can be determined by controlling the band structure such that the frequencies of the fundamental and second-harmonic waves are precisely located at the lower edges of photonic bandgaps. The results of our numerical experiments show the optimal design problem can be solved efficiently based on crucial initial data given by some useful engineering intuitions. The SHG with high conversion efficiency is achieved by choosing the geometrical parameters of the elementary cell optimally and controlling the band structure of the PhC precisely.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational design for guided-mode grating resonances

Gang Bao and Kai Huang
J. Opt. Soc. Am. A 22(7) 1408-1413 (2005)

Exact iterative solution of second harmonic generation in quasi-phase-matched structures

Ming-Liang Ren and Zhi-Yuan Li
Opt. Express 18(7) 7288-7299 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription