Abstract

Spectroscopic measurements and laser performance of Ti:Al2O3 are discussed in detail. Data on absorption and fluorescence spectra and fluorescence lifetime as a function of temperature are presented. Laser characteristics observed with pulsed-dye-laser, frequency-doubled Nd:YAG-laser, and argon-ion-laser pumping are covered and show that nearly quantum-limited conversion of pump radiation can be achieved, along with tuning over the wavelength range 660–986 nm.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Operation of the Ti:Al2O3laser was first reported by the author at the Twelfth International Quantum Electronics Conference in Munich in June 1982. Brief articles appeared in Physics News in 1982,” P. F. Schewe, ed. (American Institute of Physics, New York, 1983) and in Solid State Research Report (Lincoln Laboratory, MIT, 1982:3), pp. 15–21. A more complete description of the author’s efforts was in the chapter “Recent advances in transition-metal-doped lasers,” in Tunable Solid State Lasers, Springer Series in Optical Sciences, P. Hammerling, A. Budgor, A. Pinto, eds. (Springer-Verlag, Berlin, 1985), pp. 4–10. Work by others includes P. Lacovara, L. Esterowitz, R. Allen, “Flash-lamp pumped Ti:Al2O3laser using fluorescent conversion,” Opt. Lett. 10, 273–275 (1985); G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985); B. K. Sevast’yanov et al.., “Tunable laser based on Al2O3:Ti3+crystal,” Sov. Phys. Crystallog. 29, 566–567 (1984).
    [CrossRef] [PubMed]
  2. E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
    [CrossRef]
  3. R. R. Joyce, P. L. Richards, “Far infrared spectra of Al2O3Doped with Ti, V and Cr,” Phys. Rev. 179, 375–380 (1969).
    [CrossRef]
  4. R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
    [CrossRef]
  5. D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
    [CrossRef]
  6. T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
    [CrossRef]
  7. G. A. Keig, “Influence of the valence state of added impurity ions on the observed color in doped aluminum oxide single crystals,” J. Cryst. Growth 2, 356–360 (1968).
    [CrossRef]
  8. H. K. Eigenmann, Ph.D. dissertation (Swiss Federal Institute of Technology, Zurich, Switzerland, 1970).
  9. B. F. Gachter, J. A. Koningstein, “Zero phonon transitions and interacting Jahn–Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60, 2003–2006 (1974).
    [CrossRef]
  10. Similar results have been observed by K. L. Schepler, AFAL, Wright-Patterson Air Force Base, Ohio 45433 (personal communication, 1983).
  11. Similar fluorescence lifetime data have been observed by G. Huber, University of Hamburg, Hamburg, Federal Republic of Germany (personal communication, 1984).
  12. H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
    [CrossRef]
  13. G. Nath, G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A23, 624–625 (1968).
  14. T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).
  15. Electronics Division, Union Carbide, San Diego, Calif.
  16. Crystal Systems, Inc., Salem, Mass.
  17. P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
    [CrossRef]
  18. C. K. Jorgenson, University of Geneva, Geneva, Switzerland (personal communication, 1985).
  19. C. K. Jorgenson, “Comparative ligand field studies IV,” Acta Chem. Scand. 11, 73–85 (1957).
    [CrossRef]
  20. P. F. Moulton, “An investigation of the Co:MgF2laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
    [CrossRef]
  21. D. E. McCumber, “Theory of phonon-terminated optical masters,” Phys. Rev. 134, A299–A306 (1964).
    [CrossRef]
  22. D. Curie, Luminescence in Crystals (Methuen, London, 1963), p. 69.

1985 (2)

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

1976 (1)

T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).

1974 (1)

B. F. Gachter, J. A. Koningstein, “Zero phonon transitions and interacting Jahn–Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60, 2003–2006 (1974).
[CrossRef]

1970 (1)

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

1969 (2)

R. R. Joyce, P. L. Richards, “Far infrared spectra of Al2O3Doped with Ti, V and Cr,” Phys. Rev. 179, 375–380 (1969).
[CrossRef]

T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
[CrossRef]

1968 (3)

G. A. Keig, “Influence of the valence state of added impurity ions on the observed color in doped aluminum oxide single crystals,” J. Cryst. Growth 2, 356–360 (1968).
[CrossRef]

R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

G. Nath, G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A23, 624–625 (1968).

1967 (1)

E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
[CrossRef]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masters,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

1962 (1)

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

1957 (1)

C. K. Jorgenson, “Comparative ligand field studies IV,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Bessonova, T. S.

T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).

Coble, R. L.

T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
[CrossRef]

Curie, D.

D. Curie, Luminescence in Crystals (Methuen, London, 1963), p. 69.

Eigenmann, H. K.

H. K. Eigenmann, Ph.D. dissertation (Swiss Federal Institute of Technology, Zurich, Switzerland, 1970).

Esterowitz, L.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

Gachter, B. F.

B. F. Gachter, J. A. Koningstein, “Zero phonon transitions and interacting Jahn–Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60, 2003–2006 (1974).
[CrossRef]

Huber, G.

Similar fluorescence lifetime data have been observed by G. Huber, University of Hamburg, Hamburg, Federal Republic of Germany (personal communication, 1984).

Jones, T. P.

T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
[CrossRef]

Jorgenson, C. K.

C. K. Jorgenson, “Comparative ligand field studies IV,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

C. K. Jorgenson, University of Geneva, Geneva, Switzerland (personal communication, 1985).

Joyce, R. R.

R. R. Joyce, P. L. Richards, “Far infrared spectra of Al2O3Doped with Ti, V and Cr,” Phys. Rev. 179, 375–380 (1969).
[CrossRef]

Keig, G. A.

G. A. Keig, “Influence of the valence state of added impurity ions on the observed color in doped aluminum oxide single crystals,” J. Cryst. Growth 2, 356–360 (1968).
[CrossRef]

Khaimov-Malkov, V. Ya.

T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).

Kokta, M.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

Koningstein, J. A.

B. F. Gachter, J. A. Koningstein, “Zero phonon transitions and interacting Jahn–Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60, 2003–2006 (1974).
[CrossRef]

Lacovara, P.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

MacFarlane, R. M.

R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

McClure, D. S.

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masters,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

Mogab, C. J.

T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
[CrossRef]

Moulton, P. F.

P. F. Moulton, “An investigation of the Co:MgF2laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

Nath, G.

G. Nath, G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A23, 624–625 (1968).

Nelson, E. D.

E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
[CrossRef]

Richards, P. L.

R. R. Joyce, P. L. Richards, “Far infrared spectra of Al2O3Doped with Ti, V and Cr,” Phys. Rev. 179, 375–380 (1969).
[CrossRef]

Schawlow, A. L.

E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
[CrossRef]

Schepler, K. L.

Similar results have been observed by K. L. Schepler, AFAL, Wright-Patterson Air Force Base, Ohio 45433 (personal communication, 1983).

Stanislavskii, M. P.

T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).

Sturge, M. D.

R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

Tippins, H. H.

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

Walda, G.

G. Nath, G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A23, 624–625 (1968).

Wong, J. Y.

R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
[CrossRef]

Acta Chem. Scand. (1)

C. K. Jorgenson, “Comparative ligand field studies IV,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. F. Moulton, “An investigation of the Co:MgF2laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. P. Jones, R. L. Coble, C. J. Mogab, “Defect diffusion in single crystal alumum oxide,” J. Am. Ceram. Soc. 52, 331–334 (1969).
[CrossRef]

J. Chem. Phys. (2)

B. F. Gachter, J. A. Koningstein, “Zero phonon transitions and interacting Jahn–Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60, 2003–2006 (1974).
[CrossRef]

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

J. Cryst. Growth (1)

G. A. Keig, “Influence of the valence state of added impurity ions on the observed color in doped aluminum oxide single crystals,” J. Cryst. Growth 2, 356–360 (1968).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

T. S. Bessonova, M. P. Stanislavskii, V. Ya. Khaimov-Malkov, “Effect of heat treatment and irradiation on absorption spectra of Ti and Si corundum,” Opt. Spectrosc. (USSR) 41, 87–88 (1976).

Phys. Rev. (4)

D. E. McCumber, “Theory of phonon-terminated optical masters,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

E. D. Nelson, J. Y. Wong, A. L. Schawlow, “Far infrared spectra of Al2O3:Cr3+ and Al2O3Ti3+,” Phys. Rev. 156, 298–308 (1967).
[CrossRef]

R. R. Joyce, P. L. Richards, “Far infrared spectra of Al2O3Doped with Ti, V and Cr,” Phys. Rev. 179, 375–380 (1969).
[CrossRef]

R. M. MacFarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn–Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

Phys. Rev. B (1)

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

Z. Naturforsch. (1)

G. Nath, G. Walda, “Strong reduction of laser produced damage in sapphire and ruby by doping with TiO2,” Z. Naturforsch. A23, 624–625 (1968).

Other (8)

Electronics Division, Union Carbide, San Diego, Calif.

Crystal Systems, Inc., Salem, Mass.

D. Curie, Luminescence in Crystals (Methuen, London, 1963), p. 69.

Operation of the Ti:Al2O3laser was first reported by the author at the Twelfth International Quantum Electronics Conference in Munich in June 1982. Brief articles appeared in Physics News in 1982,” P. F. Schewe, ed. (American Institute of Physics, New York, 1983) and in Solid State Research Report (Lincoln Laboratory, MIT, 1982:3), pp. 15–21. A more complete description of the author’s efforts was in the chapter “Recent advances in transition-metal-doped lasers,” in Tunable Solid State Lasers, Springer Series in Optical Sciences, P. Hammerling, A. Budgor, A. Pinto, eds. (Springer-Verlag, Berlin, 1985), pp. 4–10. Work by others includes P. Lacovara, L. Esterowitz, R. Allen, “Flash-lamp pumped Ti:Al2O3laser using fluorescent conversion,” Opt. Lett. 10, 273–275 (1985); G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985); B. K. Sevast’yanov et al.., “Tunable laser based on Al2O3:Ti3+crystal,” Sov. Phys. Crystallog. 29, 566–567 (1984).
[CrossRef] [PubMed]

H. K. Eigenmann, Ph.D. dissertation (Swiss Federal Institute of Technology, Zurich, Switzerland, 1970).

Similar results have been observed by K. L. Schepler, AFAL, Wright-Patterson Air Force Base, Ohio 45433 (personal communication, 1983).

Similar fluorescence lifetime data have been observed by G. Huber, University of Hamburg, Hamburg, Federal Republic of Germany (personal communication, 1984).

C. K. Jorgenson, University of Geneva, Geneva, Switzerland (personal communication, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Polarized absorption cross sections for the 2T22E transition in Ti:Al2O3. Baseline was arbitrarily set to zero for both polarizations at 700 nm.

Fig. 2
Fig. 2

Polarized fluorescence spectra and calculated gain line shape for Ti:Al2O3.

Fig. 3
Fig. 3

Fluorescence lifetime versus temperature for the 2E2T2 transition in Ti:Al2O3.

Fig. 4
Fig. 4

Polarized measurement of the infrared absorption band in Ti:Al2O3.

Fig. 5
Fig. 5

Pump pulse shape (a) and Ti:Al2O3 laser pulses at (b) 1.6-times threshold and (c) 3.6-times threshold. Time scale is 100 nsec per large division. Signals at left of traces are electrical noise.

Fig. 6
Fig. 6

Output energy versus absorbed pump energy with two different output-mirror transmissions for dye-laser-pumped Ti:Al2O3 laser.

Fig. 7
Fig. 7

Output energy versus absorbed input energy for two different laser crystals, pumped by a frequency-doubled Nd:YAG laser.

Fig. 8
Fig. 8

Output pulse from a frequency-doubled Nd:YAG-pumped Ti:Al2O3 laser. Time scale is 4 nsec per large division.

Fig. 9
Fig. 9

Output energy versus absorbed input energy for a Ti:Al2O3 laser pumped by an unstable-resonator, frequency-doubled Nd:YAG laser.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ p r = π ( b 2 + 1 ) h c w pu 2 G 2 λ p u P pu τ [ 1 - exp ( - α p u l ) ] - 1 ,
L = ( T 2 - R 1 T TH ) / ( R TH - 1 )
L = ( R Δ - 1 ) T 1 T 2 / ( T 2 - R Δ T 1 ) .
P TH = π E p w L 2 ( L + T ) ( a 2 + 1 ) 4 σ τ [ 1 - exp ( - α l ) ] ,
σ ζ ( k , ν ) = f ζ ( k , ν ) c 2 / n 2 ν 2 ,
σ ζ ( k , λ ) = λ 5 G ζ ( k , λ ) h c 2 n 2 .
G ( λ , θ , ϕ , ψ ) = G σ ( λ ) ( cos 2 ψ + sin 2 ψ cos 2 θ ) + G π ( λ ) sin 2 ψ sin 2 θ ,
1 / τ = ζ 4 π d Ω k ζ 0 f ζ ( k , ν ) d ν ,
1 / τ = 1 h c 0 d λ 0 2 π d ϕ 0 π d θ λ sin θ [ G ζ ( λ ) ( 1 + cos 2 θ ) + G π ( λ ) sin 2 θ ] ,
1 / τ = 8 π h c 0 [ G σ ( λ ) + G π ( λ ) ] d λ .
g σ ( λ ) = α G σ ( λ ) , g π ( λ ) = α G π ( λ ) ,
σ ( θ , ψ , λ ) = λ 5 [ g π ( λ ) sin 2 ψ sin 2 θ + g σ ( λ ) ( cos 2 ψ + sin 2 ψ cos 2 θ ) 8 π c n 2 τ I ,
I = 0 [ g σ ( λ ) + 1 / 3 g π ( λ ) ] λ d λ .
F i f = g i g f m c 2 π e 2 9 n ( n 2 + 2 ) 2 0 [ σ σ ( λ ) + σ π ( λ ) ] d λ λ 2 ,

Metrics