Abstract

This paper investigates the concept of multilayered tripod frequency selective surfaces in infrared (IR). A full wave analysis based on the finite-difference time-domain technique is applied to comprehensively characterize the structure and obtain the performance for both normal and oblique waves (for TE and TM polarizations). The layered tripod structure can be envisioned as a mean to realize cascaded LC circuit configurations achieving desired filter performance. A wide stop band IR nanofilter which is almost independent of incident wave angle and polarization is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  2. N. I. Zheludev, “The road ahead for metamaterials,” Appl. Phys. 328, 582–583 (2010).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  4. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
    [CrossRef]
  5. J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
    [CrossRef]
  6. K. R. Jha and G. Singh, “Design of highly directive cavity type terahertz antenna for wireless communication,” Opt. Commun. 284, 4996–5002 (2011).
    [CrossRef]
  7. R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
    [CrossRef]
  8. G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
    [CrossRef]
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed. (Artech House, 2005).
  10. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
    [CrossRef]
  12. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
    [CrossRef]
  13. D. H. Kim and J. I. Choi, “Design of a multiband frequency selective surface,” ETRI J. 28, 506–508 (2006).
    [CrossRef]
  14. A. Barlevy, and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting visa: concept, analysis, and design,” IEEE Trans. Antennas Propag. 49, 343–353 (2001).
    [CrossRef]
  15. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures(Artech House, 1964).

2011

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

K. R. Jha and G. Singh, “Design of highly directive cavity type terahertz antenna for wireless communication,” Opt. Commun. 284, 4996–5002 (2011).
[CrossRef]

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

2010

N. I. Zheludev, “The road ahead for metamaterials,” Appl. Phys. 328, 582–583 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

2007

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

2006

D. H. Kim and J. I. Choi, “Design of a multiband frequency selective surface,” ETRI J. 28, 506–508 (2006).
[CrossRef]

2001

A. Barlevy, and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting visa: concept, analysis, and design,” IEEE Trans. Antennas Propag. 49, 343–353 (2001).
[CrossRef]

1994

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Barlevy, A.

A. Barlevy, and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting visa: concept, analysis, and design,” IEEE Trans. Antennas Propag. 49, 343–353 (2001).
[CrossRef]

Cahill, R.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

Cheung, R.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Choi, J. I.

D. H. Kim and J. I. Choi, “Design of a multiband frequency selective surface,” ETRI J. 28, 506–508 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[CrossRef]

Desmulliez, M.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Dickie, R.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

Esselle, K. P.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

Fusco, V.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

Gamble, H. S.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

Goussetis, G.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Guo, L. J.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed. (Artech House, 2005).

Harms, P.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Jha, K. R.

K. R. Jha and G. Singh, “Design of highly directive cavity type terahertz antenna for wireless communication,” Opt. Commun. 284, 4996–5002 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[CrossRef]

Jones, E. M. T.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures(Artech House, 1964).

Karlsson, A.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

Kiani, G. I.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

Kim, D. H.

D. H. Kim and J. I. Choi, “Design of a multiband frequency selective surface,” ETRI J. 28, 506–508 (2006).
[CrossRef]

Ko, W.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Luo, X.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

Mateo-Segura, C.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Matthaei, G. L.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures(Artech House, 1964).

Mitchell, N.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

Mittra, R.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Mosallaei, H.

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

Nilsson, M.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

Olsson, L. G.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Rahmat-Samii, Y.

A. Barlevy, and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting visa: concept, analysis, and design,” IEEE Trans. Antennas Propag. 49, 343–353 (2001).
[CrossRef]

Sanz-Fernández, J. J.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Singh, G.

K. R. Jha and G. Singh, “Design of highly directive cavity type terahertz antenna for wireless communication,” Opt. Commun. 284, 4996–5002 (2011).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed. (Artech House, 2005).

Wu, Y. K.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

Xu, T.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

Young, L.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures(Artech House, 1964).

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Appl. Phys. 328, 582–583 (2010).
[CrossRef]

Appl. Phys.

N. I. Zheludev, “The road ahead for metamaterials,” Appl. Phys. 328, 582–583 (2010).
[CrossRef]

ETRI J.

D. H. Kim and J. I. Choi, “Design of a multiband frequency selective surface,” ETRI J. 28, 506–508 (2006).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Barlevy, and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting visa: concept, analysis, and design,” IEEE Trans. Antennas Propag. 49, 343–353 (2001).
[CrossRef]

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antennas Propag. 59, 520–525 (2011).
[CrossRef]

IEEE Trans. Electromagn. Compat.

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol.

R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 1, 450–461 (2011).
[CrossRef]

J. Nanophoton.

J. J. Sanz-Fernández, C. Mateo-Segura, R. Cheung, G. Goussetis, and M. Desmulliez, “Near-filed enhancement for infrared sensor applications,” J. Nanophoton. 5, 051814 (2011).
[CrossRef]

Nat. Commun.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Opt. Commun.

K. R. Jha and G. Singh, “Design of highly directive cavity type terahertz antenna for wireless communication,” Opt. Commun. 284, 4996–5002 (2011).
[CrossRef]

Phys. Rev. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[CrossRef]

Other

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures(Artech House, 1964).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed. (Artech House, 2005).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the proposed tripod FSS and (b) the unit cell of the periodic array. The dashed lines are representing the periodic boundary conditions in y and z directions. The unit cell sizes in y and z directions are Ty=1.4μm and Tz=2.44μm, respectively. The arm length and width are assumed to be L1=480nm and L2=400nm as defined in the figure. (c) The solid line is the reflectivity of the plasmonic tripod FSS obtained with FDTD. The dashed line shows the |S11|2 calculated for the shown series LC circuit with C=0.0039fF and L=667fH. The tangential (d) electric and (e) magnetic field at resonance on the surface of the periodic array unit cell show the coupling between the legs of the tripods and the current flowing on the tripod legs, respectively.

Fig. 2.
Fig. 2.

(a) Schematic of the two layer plasmonic tripod FSS embedded inside the dielectric; (b) The unit cell of the periodic array; (c) The solid curve is the reflectivity for d=40nm obtained by FDTD. The dashed line shows the |S11|2 calculated for the circuit with C1=0.0041fF, L1=1.3pH, C2=0.0038fF, and L2=3.8ph. The tangential (d) electric and (e) magnetic field at resonance on the surface of the periodic array unit cell shows high field intensity at some new spots, which represents the coupling between the two layers.

Fig. 3.
Fig. 3.

(a) Reflectivity for three different values of d showing the effect of decreasing the coupling between the two layers by increasing the distance between them; (b) The x component of electric field in xz plane between the two overlapped legs of tripod in each layer. The yellow dashed lines are the boundaries of the tripod legs. The enhanced electric field counts as a result of the coupling between the two adjacent layers.

Fig. 4.
Fig. 4.

(a) Schematic of the four-layer plasmonic tripod nanofilter. (b) Reflectivity for three different values of D while d is assumed to be 60 nm. (c) Reflectivity for three different values of d while D is assumed to be 900 nm.

Fig. 5.
Fig. 5.

(a) Circuit model for the designed nanofilter. The transmission line has a length of 700 nm with the characteristic impedance of 269.3 ohm; (b) The solid curve corresponds to TE polarization and the dashed curve is for TM. The dotted line is the calculated |S11|2 of the circuit model with the parameters of C1=0.0041fF, L1=1.3pH, C2=0.0038fF, and L2=3.8pH.

Fig. 6.
Fig. 6.

(a) TE and (b) TM reflectivity from the nanofilter excited with oblique incident plane wave.

Metrics