Abstract

Photoacoustic generation is an attractive alternative to generate ultrasound due to its broad bandwidth and high frequency capabilities. However, the challenges in low generation efficiency need to be addressed. In order to address this issue, a one-pot synthesized polydimethylsiloxane-gold nanoparticle (PDMS/Au NP) nanocomposite was utilized to generate ultrasonic pulses excited by a nanosecond laser. The enhanced efficiency of the photoacoustic signal was investigated by varying the concentration and the thickness of the nanocomposite film. The optimal peak-to-peak amplitude of the acoustic signal was observed to be 189.49 kPa under the laser energy density of 13mJ/cm2 at 1.8 mm away from the nanocomposite film, when the thickness and the concentration of the film were 450 μm and 1.79 wt. %, respectively. Furthermore, the efficiency of the photoacoustic generation was increased 3 orders of magnitude compared to the aluminum thin film. The results indicate that high photoacoustic generation efficiency could be achieved through the PDMS/Au NPs nanocomposite.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
    [CrossRef]
  2. A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
    [CrossRef]
  3. G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
    [CrossRef]
  4. Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
    [CrossRef]
  5. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
    [CrossRef]
  6. E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Conference Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1998. IMTC/98, Vol. 2 (IEEE1998), pp. 948–952.
  7. Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
    [CrossRef]
  8. T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
    [CrossRef]
  9. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
    [CrossRef]
  10. J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
    [CrossRef]
  11. D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
    [CrossRef]
  12. A. Tam, “Photoacoustic generation and detection of 10 ns acoustic pulses in solids,” Appl. Phys. Lett. 42, 33–35 (1983).
    [CrossRef]
  13. H. Lai, “Theory of the pulsed optoacoustic technique,” J. Acoust. Soc. Am. 72, 2000–2007 (1982).
    [CrossRef]
  14. R. Dewhurst, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
    [CrossRef]
  15. R. von Gutfeld, “20 MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 30, 257–259 (1977).
    [CrossRef]
  16. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [CrossRef]
  17. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
    [CrossRef]
  18. X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
    [CrossRef]
  19. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
    [CrossRef]
  20. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
    [CrossRef]
  21. Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
    [CrossRef]
  22. H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
    [CrossRef]
  23. D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).
  24. A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
    [CrossRef]

2011

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

2010

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
[CrossRef]

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

2009

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

2008

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

2007

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

2004

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

2003

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
[CrossRef]

2001

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

1993

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

1988

J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
[CrossRef]

1986

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

1983

A. Tam, “Photoacoustic generation and detection of 10 ns acoustic pulses in solids,” Appl. Phys. Lett. 42, 33–35 (1983).
[CrossRef]

1982

H. Lai, “Theory of the pulsed optoacoustic technique,” J. Acoust. Soc. Am. 72, 2000–2007 (1982).
[CrossRef]

R. Dewhurst, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

1977

R. von Gutfeld, “20 MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 30, 257–259 (1977).
[CrossRef]

Ajayan, P. M.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Alvarez, P. J. J.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Ashkenazi, S.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Aussel, J. D.

J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
[CrossRef]

Baac, H. W.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Baboux, J. C.

J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
[CrossRef]

Baerwald, A.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

Biagi, E.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Conference Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1998. IMTC/98, Vol. 2 (IEEE1998), pp. 948–952.

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
[CrossRef]

Cawley, P.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

Chen, S.-L.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Conjusteau, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Copland, J. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Dauk, S.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

Davies, S. J.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

Dewhurst, R.

R. Dewhurst, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

Drinkwater, B. W.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
[CrossRef]

Edwards, C.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

Eghtedari, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Goyal, A.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Guo, L. J.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Gusman, A. M.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Hart, A. J.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Hou, Y.

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Huang, S.-w.

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Hunter, A. J.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
[CrossRef]

Hutchins, D. A.

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

Ireland, R.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

John, G.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Kanthan, R.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

Karimzada, M.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Kim, J.-s.

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Kotov, N. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Ku, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Kumar, A.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Lai, H.

H. Lai, “Theory of the pulsed optoacoustic technique,” J. Acoust. Soc. Am. 72, 2000–2007 (1982).
[CrossRef]

Le Brun, A.

J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Li, Z.-Y.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

Ling, T.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Loh, K. J.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Mahendra, S.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

Masotti, L.

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Conference Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1998. IMTC/98, Vol. 2 (IEEE1998), pp. 948–952.

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

Motamedi, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Nagy, P. B.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

O’Donnell, M.

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
[CrossRef]

O’Neal, D. P.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Ok, J. G.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Oraevsky, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Palmer, S. B.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

Park, H. J.

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Patra, P. K.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Pieraccini, M.

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Conference Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1998. IMTC/98, Vol. 2 (IEEE1998), pp. 948–952.

Ryu, D.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Scruby, C.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

Singh, J.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

Skrabalak, S. E.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
[CrossRef]

Sposito, G.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

Stein, E. W.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

Stoica, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Tabatabaei, S.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Tam, A.

A. Tam, “Photoacoustic generation and detection of 10 ns acoustic pulses in solids,” Appl. Phys. Lett. 42, 33–35 (1983).
[CrossRef]

Taylor, G. S.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

von Gutfeld, R.

R. von Gutfeld, “20 MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 30, 257–259 (1977).
[CrossRef]

Wang, L. V.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Wang, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Ward, C.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

Wilcox, P. D.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
[CrossRef]

Xia, Y.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

Xie, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

Yaghmaie, F.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Yang, X.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).
[CrossRef]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

A. Tam, “Photoacoustic generation and detection of 10 ns acoustic pulses in solids,” Appl. Phys. Lett. 42, 33–35 (1983).
[CrossRef]

R. von Gutfeld, “20 MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 30, 257–259 (1977).
[CrossRef]

H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97, 234104 (2010).
[CrossRef]

Can. J. Phys.

D. A. Hutchins, “Mechanisms of pulsed photoacoustic generation,” Can. J. Phys. 64, 1247–1264 (1986).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161–1176 (2003).
[CrossRef]

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

Y. Hou, J.-s. Kim, S.-w. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1867–1877 (2008).
[CrossRef]

J. Acoust. Soc. Am.

H. Lai, “Theory of the pulsed optoacoustic technique,” J. Acoust. Soc. Am. 72, 2000–2007 (1982).
[CrossRef]

J. Appl. Phys.

R. Dewhurst, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

J. Phys. D

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[CrossRef]

Macromol. Rapid Commun.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30, 1116–1122 (2009).
[CrossRef]

Nano Lett

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett 7, 1914–1918 (2007).
[CrossRef]

Nano Lett.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[CrossRef]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Lett. 7, 3798–3802 (2007).
[CrossRef]

NDT & E Int.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT & E Int. 43, 78–85 (2010).
[CrossRef]

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT & E Int. 43, 555–567 (2010).
[CrossRef]

Smart Struct. Syst.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8, 471–486 (2011).

Ultrasonics

J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics 26, 245–255 (1988).
[CrossRef]

Ultrasound Obstet. Gynecol.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34, 201–207 (2009).
[CrossRef]

Wiley Interdiscipl. Rev.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscipl. Rev. 1, 360–368 (2009).
[CrossRef]

Other

E. Biagi, L. Masotti, and M. Pieraccini, “Fiber optic photoacoustic device: high efficiency and wide bandwidth ultrasonic source,” in Conference Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1998. IMTC/98, Vol. 2 (IEEE1998), pp. 948–952.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorption spectra of gold nanocomposite samples with four different concentrations.

Fig. 2.
Fig. 2.

Schematic diagram of the PA generation experimental setup.

Fig. 3.
Fig. 3.

(a) Typical PA signals generated by different laser energy densities. (b) Frequency response of the PA-generated signal.

Fig. 4.
Fig. 4.

Relationships between the acoustic amplitude and the thickness under different laser energy densities for samples with four different concentrations: (a) 0.47 wt. %, (b) 0.86 wt. %, (c) 1.79 wt. %, (d) 3.75 wt. %.

Fig. 5.
Fig. 5.

Relationship of the generated acoustic amplitude versus the concentration as well as the thickness of the film. The laser energy density was 13mJ/cm2.

Tables (1)

Tables Icon

Table 1. Combinations of the Gold Nanocomposite Concentrations and Thicknesses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η=EaEoptical,
EacBA0p2(t)dt,

Metrics