Abstract

Nanoporous gold films are prepared using a dealloying method and form a sponge type bicontinuous network. As the structure sizes are below 50 nm, the material forms an effective medium with a negative dielectric constant for near infrared light. The dispersion relation of the propagating surface plasmons on the air/nanoporous gold interface is determined from reflection measurements in the Kretschmann configuration. A characteristic red-shift by ca. 0.85 eV compared to surface plasmons on solid gold layers is observed. The results are compared with calculated dispersion relations applying the Bruggeman effective medium theory for the nanoporous gold films.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  3. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chapter 2.
  5. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface-plasmon polaritons on metal-dielectric nanocomposite flims,” Opt. Lett. 34, 3535–3527 (2009).
    [CrossRef]
  6. F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
    [CrossRef]
  7. Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
    [CrossRef]
  8. A. J. Forty, “Corrosion micromorphology of noble metal alloys and depletion gilding,” Nature 282, 597–598 (1979).
    [CrossRef]
  9. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
    [CrossRef]
  10. E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  12. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 416, 636–664 (1935).
    [CrossRef]
  13. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
    [CrossRef]
  14. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
    [CrossRef]

2009

Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface-plasmon polaritons on metal-dielectric nanocomposite flims,” Opt. Lett. 34, 3535–3527 (2009).
[CrossRef]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

2007

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

2004

Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2001

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

1988

E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

1979

A. J. Forty, “Corrosion micromorphology of noble metal alloys and depletion gilding,” Nature 282, 597–598 (1979).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 416, 636–664 (1935).
[CrossRef]

1904

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Ahl, S.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Atkinson, R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Aziz, M. J.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Boyd, R. W.

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 416, 636–664 (1935).
[CrossRef]

Caminade, A. M.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Dimitrov, N.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

Ding, Y.

Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Erlebacher, J.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
[CrossRef]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

Evans, P. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Fontana, E.

E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

Forty, A. J.

A. J. Forty, “Corrosion micromorphology of noble metal alloys and depletion gilding,” Nature 282, 597–598 (1979).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

Hendren, W. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Karma, A.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

Kim, Y. J.

Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
[CrossRef]

Knoll, W.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Liapis, A. C.

Majoral, J. P.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Murphy, A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Nelson, M. A.

Nordlander, P.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

Novotny, L.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Pantell, R. H.

E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

Piredda, G.

Podolskiy, V. A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Pollard, R. J.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chapter 2.

Shi, Z.

Sieradzki, K.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

Wurtz, G. A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Yu, F.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Zayats, A. V.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Acc. Chem. Res.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

Adv. Mater.

Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Adv. Mater. 16, 1897–1900 (2004).
[CrossRef]

Anal. Chem.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[CrossRef]

Ann. Phys.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 416, 636–664 (1935).
[CrossRef]

Nature

A. J. Forty, “Corrosion micromorphology of noble metal alloys and depletion gilding,” Nature 282, 597–598 (1979).
[CrossRef]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. “Evolution of nanoporosity in dealloying,” Nature 410, 450–453 (2001).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Lett.

Phil. Trans. R. Soc. A

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Phys. Rev. B

E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero-metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chapter 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM images of samples dealloyed in 65% conc. HNO3 for different times (a) 10 min; (b) 60 min. After dealloying the film consists of an irregular bi-continuous network of air pores and gold veins forming a nanoporous gold film. With increasing dealloying time the film coarsens, but the structure sizes remain well below the wavelength of visible light.

Fig. 2.
Fig. 2.

SEM cross section of the 60 min dealloyed nanoporous gold film prepared by FIB. The porous network penetrates the whole film and the film thickness amounts to ca. 100 nm.

Fig. 3.
Fig. 3.

Real and imaginary parts of the dielectric constant of the nanoporous gold film (60 min dealloyed sample—red) and of the evaporated bulk gold film (black) determined by spectroscopic ellipsometric measurements.

Fig. 4.
Fig. 4.

Excitation of surface plasmons using the Kretschmann configuration (prism coupling).

Fig. 5.
Fig. 5.

Angular resolved reflectivity spectra in Kretschmann configuration. The value of the angle of incidence θ in the glass is indicated on each curve. (a) bulk gold film, p-polarized light, (b) nanoporous gold film, p-polarized, (c) bulk gold film, s-polarized, (d) nanoporous gold film, s-polarized, Spectra in (a)–(d) are all normalized by total internal reflection spectra from a bare glass slide at the specific angles and polarizations. (e) ratio of p-polarized/s-polarized reflection for bulk gold film, (f) ratio of p-polarized/s-polarized reflection for nanoporous gold film. For p-polarized light a dip in reflection occurs, which shifts to shorter wavelengths with increasing angle of incidence (indicated by the crosses). This indicates the resonant excitation of propagating surface plasmons.

Fig. 6.
Fig. 6.

Dispersion relation of propagating surface plasmons at the bulk gold film (black) and the nanoporous gold film (red). Experimentally determined data are shown as squares, while dispersion curves determined from theoretical calculations are shown as lines. (a) For the theoretical calculations, the dielectric constants from the ellipsometric measurements are used (Fig. 3). (b) The theoretical calculations are based on effective dielectric constants determined by the Bruggeman formula.

Fig. 7.
Fig. 7.

Comparison of the dielectric constants determined by ellipsometry from Fig. 3 with calculated values using the Bruggeman theory (a) Real part of the dielectric constant of the nanoporous gold and bulk gold film as received from ellipsometric data (red solid line and dash-dot black line resp.) and calculated using Bruggeman effective medium model (green dashed line and blue dotted line resp.) and (b) imaginary part of dielectric constant.

Tables (1)

Tables Icon

Table 1. The EDX Measurements for Different Nanoporous Samplesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kx=ωcεm.εdεm+εd,

Metrics