Abstract

The angular spectrum of a vectorial laser beam is expressed in terms of an intrinsic coordinate system instead of the usual Cartesian laboratory coordinates. This switch leads to simple, elegant, and new expressions, such as for the angular spectrum of the Hertz vectors corresponding to the electromagnetic fields. As an application of this approach, we consider axially symmetric vector beams, showing nondiffracting properties of these beams, without invoking the paraxial approximation.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, J. Chen, and S. Zhuang, “Vector plane wave spectrum of an arbitrary polarized electromagnetic wave,” Opt. Express 14, 2095–2100 (2006).
    [CrossRef]
  2. C.-F. Li, “Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gauss vector beams,” Opt. Lett. 32, 3543–3545 (2007).
    [CrossRef]
  3. A. Nesterov and V. Niziev, “Vector solution of the diffraction task using the Hertz vector,” Phys. Rev. E 71, 046608 (2005).
    [CrossRef]
  4. C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
    [CrossRef]
  5. E. Essex, “Hertz vector potentials of electromagnetic theory,” Am. J. Phys. 45, 1099–1101 (1977).
    [CrossRef]
  6. J. Van Bladel, Electromagnetic Fields (McGraw-Hill, 1964).
  7. P. Varga and P. Török, “Exact and approximate solutions of Maxwell’s equations for a confocal cavity,” Opt. Lett. 21, 1523–1525 (1996).
    [CrossRef]
  8. C. Someda, Electromagnetic Waves, 2nd ed. (CRC, 2006).
  9. D. Rhodes, “On the stored energy of planar apertures,” IEEE Trans. Antennas Propag. 14, 676–683 (1966).
    [CrossRef]
  10. J. Durnin, “Exact solutions for nondiffracting beams.I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  11. A. Nesterov and V. Niziev, “Propagation features of beams with axially symmetric polarization,” J. Opt. B 3, S215–S219 (2001).
    [CrossRef]

2007 (2)

2006 (1)

2005 (1)

A. Nesterov and V. Niziev, “Vector solution of the diffraction task using the Hertz vector,” Phys. Rev. E 71, 046608 (2005).
[CrossRef]

2001 (1)

A. Nesterov and V. Niziev, “Propagation features of beams with axially symmetric polarization,” J. Opt. B 3, S215–S219 (2001).
[CrossRef]

1996 (1)

1987 (1)

1977 (1)

E. Essex, “Hertz vector potentials of electromagnetic theory,” Am. J. Phys. 45, 1099–1101 (1977).
[CrossRef]

1966 (1)

D. Rhodes, “On the stored energy of planar apertures,” IEEE Trans. Antennas Propag. 14, 676–683 (1966).
[CrossRef]

Chen, J.

Durnin, J.

Essex, E.

E. Essex, “Hertz vector potentials of electromagnetic theory,” Am. J. Phys. 45, 1099–1101 (1977).
[CrossRef]

Guo, H.

Li, C.-F.

Nesterov, A.

A. Nesterov and V. Niziev, “Vector solution of the diffraction task using the Hertz vector,” Phys. Rev. E 71, 046608 (2005).
[CrossRef]

A. Nesterov and V. Niziev, “Propagation features of beams with axially symmetric polarization,” J. Opt. B 3, S215–S219 (2001).
[CrossRef]

Niziev, V.

A. Nesterov and V. Niziev, “Vector solution of the diffraction task using the Hertz vector,” Phys. Rev. E 71, 046608 (2005).
[CrossRef]

A. Nesterov and V. Niziev, “Propagation features of beams with axially symmetric polarization,” J. Opt. B 3, S215–S219 (2001).
[CrossRef]

Rhodes, D.

D. Rhodes, “On the stored energy of planar apertures,” IEEE Trans. Antennas Propag. 14, 676–683 (1966).
[CrossRef]

Someda, C.

C. Someda, Electromagnetic Waves, 2nd ed. (CRC, 2006).

Török, P.

Van Bladel, J.

J. Van Bladel, Electromagnetic Fields (McGraw-Hill, 1964).

Varga, P.

Zhuang, S.

Am. J. Phys. (1)

E. Essex, “Hertz vector potentials of electromagnetic theory,” Am. J. Phys. 45, 1099–1101 (1977).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

D. Rhodes, “On the stored energy of planar apertures,” IEEE Trans. Antennas Propag. 14, 676–683 (1966).
[CrossRef]

J. Opt. B (1)

A. Nesterov and V. Niziev, “Propagation features of beams with axially symmetric polarization,” J. Opt. B 3, S215–S219 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[CrossRef]

Phys. Rev. E (1)

A. Nesterov and V. Niziev, “Vector solution of the diffraction task using the Hertz vector,” Phys. Rev. E 71, 046608 (2005).
[CrossRef]

Other (2)

J. Van Bladel, Electromagnetic Fields (McGraw-Hill, 1964).

C. Someda, Electromagnetic Waves, 2nd ed. (CRC, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics