Abstract

A compact, all-fiber, open-cavity Fabry–Perot interferometer gas refractometer formed by fusion splicing a short section of single-mode fiber (SMF) between two sections of SMFs with a large lateral offset is proposed. Only simple fabrication steps including cleaving and fusion splicing are involved, so the fabrication is easy, safe, and cost effective. Such fabricated sensors have been successfully demonstrated as gas refractometers having a refractive index response of high sensitivity (1540nm/RIU), good linearity, and high repeatability. Temperature evaluations also show that this kind of interferometer has a very low thermal sensitivity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
    [CrossRef]
  2. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
  3. J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
    [CrossRef]
  4. G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
  5. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
    [CrossRef]
  6. W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682 (2001).
    [CrossRef]
  7. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).
  8. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155(2010).
  9. M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao, L.-C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry–Perot interferometer,” Appl. Opt. 49, 1593–1598 (2010).
    [CrossRef]
  10. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry–Pérot gas sensor,” Opt. Express 17, 2731–2738 (2009).
    [CrossRef]
  11. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008).
    [CrossRef]
  12. M. S. Ferreira, M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry–Pérot cavity based on a diaphragm free hollow core silica tube,” Opt. Lett. 36, 4029–4031 (2011).
    [CrossRef]
  13. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
  14. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
    [CrossRef]
  15. Z. Tian and S.S.-H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27, 2296–2306 (2009).
    [CrossRef]
  16. D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).
  17. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 60–63.
  18. E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958–962 (1972).
    [CrossRef]
  19. K. P. Buch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
    [CrossRef]
  20. K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994).
    [CrossRef]
  21. S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
    [CrossRef]
  22. G. B. Hocker, “Fiber-optical sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef]
  23. Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
    [CrossRef]

2011 (3)

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

M. S. Ferreira, M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry–Pérot cavity based on a diaphragm free hollow core silica tube,” Opt. Lett. 36, 4029–4031 (2011).
[CrossRef]

2010 (2)

2009 (2)

2008 (2)

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

2007 (2)

2006 (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

2005 (1)

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

2001 (2)

S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
[CrossRef]

W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682 (2001).
[CrossRef]

1995 (1)

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

1994 (1)

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994).
[CrossRef]

1993 (1)

K. P. Buch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

1992 (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).

1979 (1)

1972 (1)

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Birch, K. P.

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994).
[CrossRef]

Buch, K. P.

K. P. Buch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Cai, L.

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

Choi, H. Y.

Coelho, L.

Deng, M.

M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao, L.-C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry–Perot interferometer,” Appl. Opt. 49, 1593–1598 (2010).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

Downs, M. J.

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994).
[CrossRef]

K. P. Buch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Duan, D. W.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef]

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

Fan, X.

Ferreira, M. S.

Frazão, O.

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Han, M.

Han, Y.

Hocker, G. B.

Hui, R.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 60–63.

Jackson, D. A.

S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Kim, M. J.

Kobelke, J.

Lee, B. H.

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).

Li, Y.

Lin, C.-J.

Liu, J.

Lopez-Amo, M.

Mc Murtry, S.

S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
[CrossRef]

O’Sullivan, M.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 60–63.

Peck, E. R.

Pinto, A. M. R.

Rao, Y. J.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef]

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

Rao, Y.-J.

Reeder, K.

Santos, J. L.

Schuster, K.

Sirkis, J.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Sun, F. G.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Sun, Y.

Tang, C.-P.

Taylor, H. F.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).

Tian, Z.

Tsai, H.-L.

Tsai, W.-H.

Wei, T.

Wen, W. P.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

Wright, J. D.

S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
[CrossRef]

Wu, D.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Xiao, H.

Xu, L. C.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

Xu, L.-C.

Yam, S.S.-H.

Yang, X. C.

Yao, J.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

Zhang, Z. Y.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Zhu, T.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao, L.-C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry–Perot interferometer,” Appl. Opt. 49, 1593–1598 (2010).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef]

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47, 1702–1705 (2011).

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (1)

Metrologia (2)

K. P. Buch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators A (2)

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A 148, 33–88 (2008).

Sens. and Actuators B: Chemical (2)

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. and Actuators B: Chemical 160, 1198–1202 (2011).
[CrossRef]

S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical 72, 69–74 (2001).
[CrossRef]

Other (2)

Y. J. Rao, D. W. Duan, L. Cai, M. Deng, and T. Zhu, “In-line all-fiber Fabry–Perot and Mach–Zehnder interferometers formed by hollow fiber with lateral offset,” Proc. SPIE7753, 77530N (2011).
[CrossRef]

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 60–63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the sensor system (top) and the detail structure of the proposed sensor head (bottom). The inset in the middle is the microscope photograph of a fabricated sensor head.

Fig. 2.
Fig. 2.

Illustration of the geometrical relationship between the modified offset parameters set in fusion splicer and the real lateral offset when splicing the joint points of FPI RI sensor. The X view and Y view offset are actually the modified offset parameters in arc splicer.

Fig. 3.
Fig. 3.

Reflection spectrum of a fabricated FPI sensor with a cavity geometry length of 512um.

Fig. 4.
Fig. 4.

Drift of sensor’s reflection spectra valley versus the RI changes. The cavity lengths of the FPIs are 135um, 53.3um, and 416um respectively.

Fig. 5.
Fig. 5.

Drift of the 135um sensor’s reflection spectrum valley versus the RI changes. The insert (a) is the reflection spectrum of the tested FPI, and (b) is the spectrum valley shifts versus the air RI changes.

Fig. 6.
Fig. 6.

Temperature induced fluctuates of spectrum valley center wavelength for the open-cavity FPI. The inserts are the reflection spectra of the tested FPI at different temperatures. The left one is the wide wavelength range spectra and the right is the spectra near 1550 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δλv/Δn=λv/ngas,
nair=1+2.8756×109P1+108(0.6010.00972t)P1+0.0036610t,
ε=ΔLL=(12δ)EP,

Metrics