Abstract

An in-line Mach–Zehnder-interferometer-based two-dimensional (2-D) micrometric displacement sensor was fabricated by inserting a polarization maintaining fiber (PMF) with a length of 1 cm between two conventional single-mode fibers (SMFs). The left end of the PMF was mismatch fusion spliced with an SMF. The right end of the PMF was connected to another SMF without fusion splicing. Two independent interference patterns corresponding to the two orthogonal polarization modes in the PMF were obtained. The visibility of the interference patterns depends on the 2-D micrometric displacement of the SMF along the right end of the PMF on the slow axis and fast axis directions. Experimental results show that the 2-D micrometric displacement sensor with sensitivity of 0.669dB/μm on the slow axis direction and 0.301dB/μm on the fast axis direction was obtained. With the use of the intensity demodulation method, the proposed sensor can overcome temperature and displacement cross-sensitivity effects.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber axial micro-displacement sensor based on Mach-Zehnder interferometer

Changyu Shen, Youqing Wang, Jinlei Chu, Yanfang Lu, Yi Li, and Xinyong Dong
Opt. Express 22(26) 31984-31992 (2014)

Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method

Changyu Shen, Chuan Zhong, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, Jianfeng Wang, and Huaping Gong
Opt. Express 20(14) 15406-15417 (2012)

Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription