Abstract

Fourier-transform time-resolved spectroscopy of laser-induced breakdown of Cs vapor in a vacuum has been used for the measurement of atomic Cs emission spectra in the 8008000cm1 range with a resolution of 0.02cm1. The 6h and 7h levels of Cs are observed. The dipole transition matrix elements (transition probabilities, oscillator, and line strengths) between the observed levels are calculated using quantum defect theory.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV),” J. Phys. Chem. Ref. Data 38, 761–923 (2009).
    [CrossRef]
  2. W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999).
    [CrossRef]
  3. S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
    [CrossRef]
  4. S. I. Themelis, “Partial widths with interchannel coupling for the P-3(0) Wannier-ridge states of H-,” Phys. Rev. A 81, 064504 (2010).
    [CrossRef]
  5. S. R. Lundeen, “Fine structure in high-L Rydberg states: a path to properties of positive ions,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 52, P. R. Berman and C. C. Lin, eds. (Academic Press, 2005), pp. 161–208.
  6. M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
    [CrossRef]
  7. J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
    [CrossRef]
  8. W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
    [CrossRef]
  9. D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
    [CrossRef]
  10. A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
    [CrossRef]
  11. O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
    [CrossRef]
  12. C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008).
    [CrossRef]
  13. S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
    [CrossRef]
  14. Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).
  15. S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
    [CrossRef]
  16. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
    [CrossRef]
  17. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
    [CrossRef]
  18. K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
    [CrossRef]
  19. “Opus spectroscopy software,” http://www.brukeroptics.com/opus.html (2010).
  20. A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
    [CrossRef]
  21. H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
    [CrossRef]
  22. C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
    [CrossRef]
  23. V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
    [CrossRef]
  24. V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
    [CrossRef]
  25. B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981).
    [CrossRef]
  26. A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
    [CrossRef]
  27. A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005).
    [CrossRef]
  28. K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
    [CrossRef]
  29. M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
    [CrossRef]
  30. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
    [CrossRef]

2011 (3)

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

2010 (4)

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

S. I. Themelis, “Partial widths with interchannel coupling for the P-3(0) Wannier-ridge states of H-,” Phys. Rev. A 81, 064504 (2010).
[CrossRef]

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

2009 (2)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV),” J. Phys. Chem. Ref. Data 38, 761–923 (2009).
[CrossRef]

M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
[CrossRef]

2008 (4)

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

2007 (1)

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

2006 (1)

D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
[CrossRef]

2005 (4)

K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
[CrossRef]

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005).
[CrossRef]

2004 (3)

A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
[CrossRef]

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

2001 (1)

A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
[CrossRef]

2000 (1)

V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
[CrossRef]

1999 (1)

W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999).
[CrossRef]

1982 (1)

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

1981 (1)

B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981).
[CrossRef]

Aguilera, J. A.

C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008).
[CrossRef]

Aragon, C.

C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008).
[CrossRef]

Aubreton, A.

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

Babánková, D.

D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
[CrossRef]

Barthelemy, O.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Buslov, E. Y.

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

Chaker, M.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Chernov, V.

V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
[CrossRef]

Chernov, V. E.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981).
[CrossRef]

Cihelka, J.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

Civiš, S.

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
[CrossRef]

Clark, W.

W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999).
[CrossRef]

Cvejanovic, D.

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

Dorofeev, D. L.

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

Drogoff, B. L.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Fano, U.

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

Ferrero, J. C.

M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
[CrossRef]

Fujimori, R.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Giacomo, A. D.

A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
[CrossRef]

Gomes, A.

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

Gonzalez, J. J.

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

Greene, C. H.

W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999).
[CrossRef]

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

Hama, Y.

K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
[CrossRef]

Hanni, M. E.

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

Havey, M. D.

A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
[CrossRef]

Hirahara, Y.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Hou, X.

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

Jaman, A.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Jelínek, P.

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

Johnston, T. W.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Juha, L.

D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
[CrossRef]

Kawaguchi, K.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
[CrossRef]

Kawaguchi,, K.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

Keele, J. A.

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

Khalil, A.

A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005).
[CrossRef]

Knyazev, M. Y.

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

Kramida, A.

Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).

Kretinin, I. Y.

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

Kubelík, P.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

Laville, S.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Lee, W.-B.

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Lee, Y.-I.

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Li, Y.

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

Liu, X.

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

Lundeen, S. R.

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

S. R. Lundeen, “Fine structure in high-L Rydberg states: a path to properties of positive ions,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 52, P. R. Berman and C. C. Lin, eds. (Academic Press, 2005), pp. 161–208.

Manakov, N.

V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
[CrossRef]

Margot, J.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Matulková, I.

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

Napier, S. A.

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

Nishida, S.

K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
[CrossRef]

Nishimura, Y.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Oka, T. N.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Pascale, O. D.

A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
[CrossRef]

Pravica, L.

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

Qi, H.

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

Ralchenko, Y.

Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).

Rau, A. R. P.

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

Reader, J.

Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).

Rinaldi, C. A.

M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
[CrossRef]

Rossa, M.

M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
[CrossRef]

Sabsabi, M.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Safronova, M. S.

A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
[CrossRef]

Sanechika, N.

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV),” J. Phys. Chem. Ref. Data 38, 761–923 (2009).
[CrossRef]

Shakhatov, V.

A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
[CrossRef]

Shevelko, V. P.

B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981).
[CrossRef]

Sieradzan, A.

A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
[CrossRef]

Sneddon, J.

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Sreenivasan, N.

A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005).
[CrossRef]

Starace, A.

V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
[CrossRef]

Sturrus, W. G.

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

Sun, Y.

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

Themelis, S. I.

S. I. Themelis, “Partial widths with interchannel coupling for the P-3(0) Wannier-ridge states of H-,” Phys. Rev. A 81, 064504 (2010).
[CrossRef]

Vacquie, S.

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

Vidal, F.

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

Williams, J. F.

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

Woods, S. L.

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

Wu, J.-Y.

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Zon, B. A.

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

Appl. Spectrosc. Rev. (1)

W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008).
[CrossRef]

Eur. Phys. J. D (1)

V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000).
[CrossRef]

J. Appl. Phys. (1)

M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009).
[CrossRef]

J. Mol. Spectrosc. (1)

K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005).
[CrossRef]

J. Phys. B (3)

S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV),” J. Phys. Chem. Ref. Data 38, 761–923 (2009).
[CrossRef]

J. Phys. D (1)

A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004).
[CrossRef]

Laser Phys. Lett. (2)

H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007).
[CrossRef]

A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005).
[CrossRef]

Phys. Rev. A (9)

A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004).
[CrossRef]

V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005).
[CrossRef]

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010).
[CrossRef]

S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010).
[CrossRef]

S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008).
[CrossRef]

S. I. Themelis, “Partial widths with interchannel coupling for the P-3(0) Wannier-ridge states of H-,” Phys. Rev. A 81, 064504 (2010).
[CrossRef]

M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008).
[CrossRef]

J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010).
[CrossRef]

Phys. Scr. (1)

B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981).
[CrossRef]

Prog. Quantum Electron. (1)

D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999).
[CrossRef]

Spectrochim. Acta, Part B (3)

O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005).
[CrossRef]

C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008).
[CrossRef]

A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001).
[CrossRef]

Other (3)

Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).

“Opus spectroscopy software,” http://www.brukeroptics.com/opus.html (2010).

S. R. Lundeen, “Fine structure in high-L Rydberg states: a path to properties of positive ions,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 52, P. R. Berman and C. C. Lin, eds. (Academic Press, 2005), pp. 161–208.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for LIBS.

Fig. 2.
Fig. 2.

Timing diagram for the interleaved sampling. During the scan, the laser pulse and the analog-digital (AD) trigger sampling are induced with a rate of 1/n times of the HeNe laser fringe frequency. The complete interferograms are obtained after n scans (n=3 here).

Fig. 3.
Fig. 3.

Boltzmann plot of the ablation plasma.

Fig. 4.
Fig. 4.

A part of the recorded Cs emission spectrum (without subtraction of the background blackbody radiation signal component).

Fig. 5.
Fig. 5.

Time profiles of several Cs emission lines for L=9mm.

Fig. 6.
Fig. 6.

The dependence of the time profile of the 2864.52cm1 on the distance L between the probed area at the target surface.

Fig. 7.
Fig. 7.

The 6p327s12 doublet lines of Cs. The hyperfine components are fitted to Gaussian shape (normal curve), and the parameters of the averaged line (bold curves) are calculated according to the authors’ previous work [30].

Tables (3)

Tables Icon

Table 1. Comparison of QDT-Calculated S-Values of Cs (this work) with the Experimental and ab initio Dirac–Hartree–Fock (DHF) Calculation Results Listed In [26] and the NIST Database [14] (for the 6snp and 6p5d transitions)

Tables Icon

Table 2. Cs IR Line Wavenumbers νki, Intensities Iki, SNRs, FWHMs, and Oscillator Strengths fik for the Observed Linesa

Tables Icon

Table 3. Energy Values Ek of the Cs I Levels Involved in the Observed Transitions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(nlj)=Vion-Z2RCsn*2=Vion-Z2RCs(n-μlj)2,
IkigkAkiνkiexp(-EkkBT),
Rnlj(r)=Z1/2rn*[Ξl(E(nlj))Πl(n*)]1/2Wn*,l+1/2(2Zrn*)×[Γ(l+1+n*)Γ(n*l)(1+μlj(n*)n*)]-1/2,

Metrics