Abstract

We present a detailed comparison between modeling and experiments on supercontinuum (SC) generation in a commercial ZBLAN step-index fiber. Special emphasis is put on identifying accurate material parameters by incorporating measurements of the ZBLAN Raman gain, fiber dispersion, and loss. This identification of accurate parameters is of great importance to substantiate numerical simulations of SC generation in soft-glass fibers. Good agreement between measurement and simulation is obtained when pumping both in the normal and anomalous dispersion regimes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  2. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
    [CrossRef]
  3. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  5. N. Savage, “Supercontinuum sources,” Nat. Photon. 3, 114–115 (2009).
    [CrossRef]
  6. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
    [CrossRef]
  7. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [CrossRef]
  8. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  9. L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19, 10041–10048 (2011).
    [CrossRef]
  10. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
    [CrossRef]
  11. W. Q. Zhang, S. A. V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
    [CrossRef]
  12. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  13. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
    [CrossRef]
  14. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2Se3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
    [CrossRef]
  15. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
    [CrossRef]
  16. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
    [CrossRef]
  17. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [CrossRef]
  18. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [CrossRef]
  19. C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
    [CrossRef]
  20. D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).
    [CrossRef]
  21. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
    [CrossRef]
  22. C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
    [CrossRef]
  23. X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29, 238–243(2011).
    [CrossRef]
  24. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
    [CrossRef]
  25. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [CrossRef]
  26. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
    [CrossRef]
  27. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
    [CrossRef]
  28. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009).
    [CrossRef]
  29. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [CrossRef]
  30. K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  31. M. Horita, FiberLabs, KDDI Laboratories Building, 2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan (private communication, 2011).
  32. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
    [CrossRef]
  33. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
    [CrossRef]
  34. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [CrossRef]
  35. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
    [CrossRef]
  36. S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991).
    [CrossRef]
  37. D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
    [CrossRef]
  38. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  39. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]
  40. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
    [CrossRef]
  41. Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
    [CrossRef]
  42. T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
    [CrossRef]
  43. A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
    [CrossRef]
  44. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
    [CrossRef]
  45. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182(2002).
    [CrossRef]
  46. C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
    [CrossRef]
  47. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]
  48. J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef]

2012

2011

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2Se3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19, 10041–10048 (2011).
[CrossRef]

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
[CrossRef]

C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
[CrossRef]

C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
[CrossRef]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29, 238–243(2011).
[CrossRef]

2010

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

2003

2002

1995

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

1994

1993

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

1991

S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991).
[CrossRef]

1990

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

1989

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

1987

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

1985

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
[CrossRef]

A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

1981

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
[CrossRef]

1978

C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

1970

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Aggarwal, I. D.

Agger, C.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Aguirre, A.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
[CrossRef]

Anderson, D.

Andresen, E. R.

Bang, O.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Blow, K.

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Botineau, J.

A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Bramerie, L.

Brilland, L.

Buccoliero, D.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

Chartier, T.

Chaudhari, C.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Chen, Z.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Davey, S.

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

Dekker, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dupont, S.

Durteste, Y.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
[CrossRef]

e Silva, M. C.

Ebendorff-Heidepriem, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Efimov, A.

Eggleton, B. J.

Falk, P.

Fred, J.

Freeman, M.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Freeman, M. J.

French, W.

C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Frosz, M.

Frosz, M. H.

Fujimoto, J.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

Gay, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gordon, J. P.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Haus, H. A.

Heidt, A. M.

Herrmann, J.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Hodelin, J.

Holzlöhner, R.

Horita, M.

M. Horita, FiberLabs, KDDI Laboratories Building, 2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan (private communication, 2011).

Hudson, D. D.

Hult, J.

Husakou, A. V.

Islam, M.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Islam, M. N.

Iwashita, H.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Jackson, S. D.

Judge, A.

Judge, A. C.

Keiding, S. R.

Kim, D. Y.

Kito, C.

X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29, 238–243(2011).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knight, J. C.

Kopf, D.

Kulkarni, O. P.

Kumar, M.

Lægsgaard, J.

Lamouler, P.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
[CrossRef]

Le, S. D.

Lederer, M.

Lee, J. Y.

Lengle, K.

Lenz, G.

Li, E.

Liao, M.

Lin, C.

C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Lisak, M.

Liu, L.

Loehr, S. R.

S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991).
[CrossRef]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
[CrossRef]

Macon, L.

A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Mägi, E. C.

Malomed, B.

Mauricio, J.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Maze, G.

Méchin, D.

Menyuk, C. R.

Mimura, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Miyoshi, S.

Mizunami, T.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Monerie, M.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
[CrossRef]

Monro, T. M.

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

W. Q. Zhang, S. A. V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Moore, M.

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

Moynihan, C. T.

S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991).
[CrossRef]

Nakai, T.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Nguyen, D. M.

Nguyen, V.

C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Nielsen, C. K.

Nishizawa, N.

Noda, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Norimatsu, N.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Ohishi, Y.

Petersen, C.

Poulain, M.

Qin, G.

Qin, W.

Quiroga-Teixeiro, M.

S. A. V.,

Saïssy, A.

A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

Savage, N.

N. Savage, “Supercontinuum sources,” Nat. Photon. 3, 114–115 (2009).
[CrossRef]

Seitz, W.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shaw, L. B.

Shinbori, O.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Sinkin, O. V.

Slusher, R. E.

Sørensen, S. T.

Steffensen, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

Stolen, R. H.

Stone, J. M.

Suzuki, T.

Szebesta, D.

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

Takagi, K.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Taylor, A. J.

Terry, F.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Terry, L.

Thøgersen, J.

Thomsen, C. L.

Thual, M.

Tian, Q.

Tomlinson, W. J.

Toupin, P.

Troles, J.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

White, R. T.

Williams, J.

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

Wood, D.

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Xia, C.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

Xu, Z.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Yan, X.

Zakel, A.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

Zhang, W. Q.

Zhao, D.

Zweck, J.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Ann. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Appl. Phys. Lett.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Electron. Lett.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985).
[CrossRef]

C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

IEEE J. Quantum Electron.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009).
[CrossRef]

IEEE Photon. Technol. Lett.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

J. Chem. Phys.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Lett.

A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985).
[CrossRef]

Mater. Sci. Forum

S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991).
[CrossRef]

Nat. Photon.

N. Savage, “Supercontinuum sources,” Nat. Photon. 3, 114–115 (2009).
[CrossRef]

Opt. Commun.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Opt. Express

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[CrossRef]

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
[CrossRef]

Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

W. Q. Zhang, S. A. V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
[CrossRef]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
[CrossRef]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007).
[CrossRef]

J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[CrossRef]

J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19, 10041–10048 (2011).
[CrossRef]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

M. Horita, FiberLabs, KDDI Laboratories Building, 2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan (private communication, 2011).

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental setup for our SC measurement.

Fig. 2.
Fig. 2.

Dispersion parameters: solid black curve, calculated dispersion parameter; red curve, measured dispersion profile; dashed black, dispersion calculated from wavelength-shifted effective index (inset, dispersion in the full calculation domain).

Fig. 3.
Fig. 3.

(a) Black, lower, solid curve is measured absorption in a multimode fiber (courtesy FiberLabs [31]), and the blue, upper curve is the artificially added loss due to OH. (b) GV curves from both β(ω) and β(ω).

Fig. 4.
Fig. 4.

Raman gain profile measured at λpR=2πc/ωpR=1650nm. Dots are experimental data, and the solid curve shows the fit given by Eq. (11) and Table 1 [22].

Fig. 5.
Fig. 5.

Photon number error as a function of the propagation distance for a typical simulation neglecting loss and noise. P0=1110kW, TFWHM=110fs and λp=2000nm.

Fig. 6.
Fig. 6.

Spectrograms of the λp=1450nm and P0=1180kW simulation at (a) z=1.0cm, (b) z=5.3cm, and (c) z=L. The white dashed line marks the calculated ZDW of the fiber.

Fig. 7.
Fig. 7.

Measurement (black) and simulations (dashed green) of SCG for λp=1450nm and P0=710kW. The dotted red spectrum is obtained for the wavelength-shifted dispersion profile in Fig. [2]. Dashed vertical lines mark pump wavelength (black) and the ZDW (red, green) of the fiber.

Fig. 8.
Fig. 8.

(a) Measurement (black) and simulations (dashed green) of SCG for λp=1450nm and P0=1180kW. The dotted blue curve shows the simulation with artificial loss shown in Fig. 3. (b) The dotted red spectrum is obtained for the wavelength-shifted dispersion profile shown in Fig. 2. Dashed vertical lines mark the pump wavelength (black) and the ZDW (red, green) of the fiber.

Fig. 9.
Fig. 9.

Spectrograms of the λp=2000nm and P0=1110kW simulation at (a) z=1.0cm, (b) z=5.3cm, and (c) z=L. White dashed lines mark the calculated ZDW of the fiber.

Fig. 10.
Fig. 10.

(a) Measurement (black) and simulations (dashed green and dotted blue) of the SCG for λp=2000nm and P0=1110kW. The dotted blue curve shows a simulation with the artificial loss shown in Fig. 3. (b) The dotted red spectrum is obtained for the wavelength-shifted dispersion profile shown in Fig. 2. Dashed vertical lines mark the pump wavelength (black) and the ZDW (red, green) of the fiber.

Fig. 11.
Fig. 11.

Measurement (black) and simulations (dashed green) of the SCG for λp=2000nm and P0=2130kW. The dotted red spectrum is obtained for the wavelength-shifted dispersion profile in Fig. 2. Dashed vertical lines mark the pump wavelength (black) and the ZDW (red, green) of the fiber.

Fig. 12.
Fig. 12.

Measurements (black) and simulations (dashed green) of SCG. Top, normal pumping with λp=1450nm, TFWHM=145fs, and (a) P0=710kW and (b) P0=1180kW. Bottom, anomalous pumping with λp=2000nm, TFWHM=110fs, and (c) P0=1110kW and (d) P0=2130kW. Dashed magenta curves shows SCG for P0 reduced by 20%.

Tables (1)

Tables Icon

Table 1. Raman Gain Parameters Scaled to a Measurement Wavelength of 1060 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A(0,T)=P0eT22To2+OPPM,
C˜Iz=iγωω0eL^˜zF{CF1{R˜F{|C|2}}},
C˜I=eL^˜zC˜andC˜[AeffAeff(ω0)]14=A˜,
L^˜=i(ββ(ω0)β1(ωp)[ωω0])α2,
γ=γ(ω)=ω0n2neff(ω0)cneffAeffAeff(ω0),
PN(z)cAeff(ω0)n2neff(ω0)neffAeff|C˜I|2ωdω
ESD(z,λ)=cλ2|A˜(z,λ)|2,
PSD=cfrepλ2|A˜(z,λ)|2,
R˜=(1fR)+fRF{hR(T)},
hR(T)=θ(T)fRcπn2ωpR0gR(Ω)sin(ΩT)dΩ,
gR(Ω)=a1e(Ω/(2π)ν1)22w12+a2e(Ω/(2π)ν2)22w22.
N=n2ωsolcAeff(ωsol)P0T02|β2(ωsol)|,

Metrics