Abstract

We present an experimental study of the resonance modes in dual-periodical multilayer structures based on porous silicon. These multilayered structures are composed by stacking N times two substructures A, and B, i.e., (AnBm)N. The An and Bm are in turn composed of two different period units, a and b, respectively, where subscripts n and m are the period number in the a and b substructures. Both substructures a and b consist of a pair of alternating layers with high and low refractive indices n1 and n2, respectively. The thickness parameters of the dielectric layers in a and b are all different. We observe several resonance transmission peaks due to the periodical repetition of the AnBm structure. The number of resonance peaks, their full width at half-maximum (FWHM), etc., can be controlled by selecting the structural parameters of the system. The experimental data are in good agreement with those calculated using the transfer matrix method. These optical superlattices are very promising, since they can be designed so that the reflectance response presents a determined number of resonance modes in the most important window for optical communications, making them good candidates for direct applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef]
  4. J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
    [CrossRef]
  5. J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
    [CrossRef]
  6. L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
    [CrossRef]
  7. Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
    [CrossRef]
  8. H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
    [CrossRef]
  9. M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
    [CrossRef]
  10. M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
    [CrossRef]
  11. R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
    [CrossRef]
  12. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
    [CrossRef]
  13. A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25, 599–608 (2008).
    [CrossRef]
  14. L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006).
    [CrossRef]
  15. V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003).
    [CrossRef]
  16. V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
    [CrossRef]
  17. G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).
  18. J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
    [CrossRef]
  19. M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
    [CrossRef]
  20. V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
  21. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
    [CrossRef]
  22. M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
    [CrossRef]
  23. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
    [CrossRef]
  24. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
    [CrossRef]
  25. A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
    [CrossRef]
  26. P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1988).
  27. J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006).
    [CrossRef]
  28. S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
    [CrossRef]
  29. A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

2009 (3)

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
[CrossRef]

A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

2008 (4)

A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25, 599–608 (2008).
[CrossRef]

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

2007 (2)

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

2006 (3)

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006).
[CrossRef]

L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006).
[CrossRef]

2005 (1)

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

2004 (3)

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

2003 (5)

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003).
[CrossRef]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

2001 (2)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
[CrossRef]

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Agarwal, V.

J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003).
[CrossRef]

An, L.

L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006).
[CrossRef]

Arriaga, J.

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006).
[CrossRef]

Barthelemy, P.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Bertino, M. F.

Bettotti, P.

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Bosch, S.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Chen, L.

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Coquillat, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Costantino, P.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Dancil, K-P. S.

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

del Río, J. A.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003).
[CrossRef]

Escorcia-García, J.

J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
[CrossRef]

Estevez, J. O.

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Ferré-Borrull, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Gaburro, Z.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Gelloz, B.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

Gergely, C.

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Gil, B.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Herrera, M. R.

Huang, M. D.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Javani Jooni, F.

A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Kavokin, A.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Kim, P. J.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Koda, T.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

Kordás, K.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Koshida, N.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

Lee, H. Y.

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
[CrossRef]

Lee, Y. P.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Legros, R.

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

Leppävuori, S.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Lockwood, D. J.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

Lu, H.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Lu, Y. H.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Malpuech, G.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Méndez Blas, A.

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

Ming, N. B.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Mortezaali, A.

A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Ohta, T.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

Ohtaka, K.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

Oton, C. J.

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Palestino, G.

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

Pap, A. E.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Park, S. Y.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Parmananda, P.

J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
[CrossRef]

Pavesi, L.

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Pérez, E.

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

Pilon, L.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Qin, Q.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Ramezani Sani, S.

A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

Rhee, J. Y.

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

Sailor, M. J.

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Saldaña, X. I.

J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006).
[CrossRef]

Sancho-Parramon, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
[CrossRef]

Sapienza, R.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Scalbert, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Shimada, R.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

Szatmári, S.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Toninelli, C.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

Ueta, T.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

Uusimäki, A.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Vähäkangas, J.

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Vladimirova, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Wang, G. P.

L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006).
[CrossRef]

Wang, L.

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Wang, Z.

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Wiersma, D.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Wiersma, D. S.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Wu, Y.

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yamilov, A. G.

Yao, T.

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1988).

Yuan, C. S.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Zamfirescu, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

Zhu, S. N.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Zhu, Y. Y.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Appl. Phys. Lett. (8)

J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009).
[CrossRef]

M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008).
[CrossRef]

V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008).
[CrossRef]

J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003).
[CrossRef]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006).
[CrossRef]

J. Appl. Phys. (4)

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[CrossRef]

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006).
[CrossRef]

J. Korean Phys. Soc. (1)

M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007).
[CrossRef]

J. Non-Oxide Glass. (1)

A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007).
[CrossRef]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Opt. Mater. (Amsterdam) (1)

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef]

Science (2)

V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Sens. Act. (1)

G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).

Sol. State Electron. (1)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001).
[CrossRef]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of the 1D dual-periodic structure showing the layer parameters, where n and m represent the period numbers of a and b in substructures A and B, respectively; n1 and n2 are high and low refractive indices of alternating dielectric layers in a and b; the layer thickness is d1 and d2 for a, and d3 and d4 for b, respectively.

Fig. 2.
Fig. 2.

Refractive index and extinction coefficient as a function of the wavelength for silicon (solid line) and two PSi layers with porosities 47% (dashed line) and 76% (dotted line).

Fig. 3.
Fig. 3.

Cross sectional SEM image of 1D dual-periodical structures (a) (A4B4)3, and (b) (A3B4)3 made of PSi. (A4B4)3 sample shows two substructures A4 and B4, with a300nm and b225nm respectively.

Fig. 4.
Fig. 4.

Measured (solid line) and simulated (dashed lines) reflectance spectra of the structures (A4B4)3, (A4B4)4, (A2B4)4, and (A2B4)5 designed in visible region. The measurements were performed with light at 20° angle of incidence.

Fig. 5.
Fig. 5.

Measured (solid line) and simulated (dashed lines) reflectance spectra of the structures (A4B4)3, (A3B4)3, (A2B6)4, and (A2B4)4 designed in NIR region. The measurements were performed with light at 20° angle of incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(Enν+Enν)=Mμ(En+1ν+En+1ν),
Mjμ=(cos(ϕj)isin(ϕj)/qjμiqjμsin(ϕj)cos(ϕj)),
R=|M21M11|2.

Metrics