Abstract

The dimensionless zero-frequency electronic first hyperpolarizability 3−1/4βE107/2m3/2(eℏ)−3 of an electron in one dimension was maximized by adjusting the shape of a piecewise linear potential. Careful maximizations converged quickly to 0.708951 with increasing numbers of parameters. The Hessian shows that β is strongly sensitive to only two parameters in the potential: sensitivity to additional parameters decreases rapidly. With more than two parameters, a wide range of potentials and an apparently narrower range of wavefunctions have nearly optimal hyperpolarizability. Modulations of the potential to which the unique maximum is insensitive were characterized. Prospects for concise description of the two important constraints on near-optimum potentials are discussed.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
    [CrossRef]
  2. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
    [CrossRef]
  3. K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
    [CrossRef]
  4. J. Zhou, M. Kuzyk, and D. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006).
    [CrossRef]
  5. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
    [CrossRef]
  6. B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities,’” Phys. Rev. Lett. 95, 109401 (2005).
    [CrossRef]
  7. B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006).
    [CrossRef]
  8. S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system,” J. Opt. Soc. Am. B 28, 882–891 (2011).
    [CrossRef]
  9. M. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003).
    [CrossRef]
  10. M. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005).
    [CrossRef]
  11. D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).
    [CrossRef]
  12. J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
    [CrossRef]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).
  14. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).
  15. G. Wiggers and R. Petschek, “Comment on ‘pushing the hyperpolarizability to the limit,’” Opt. Lett. 32, 942–943 (2007).
    [CrossRef]
  16. G. L. Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation (Springer-Verlag, 1988).
  17. Available online from http://tatherton.phy.tufts.edu/.

2011

D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).
[CrossRef]

S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system,” J. Opt. Soc. Am. B 28, 882–891 (2011).
[CrossRef]

2008

J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
[CrossRef]

2007

G. Wiggers and R. Petschek, “Comment on ‘pushing the hyperpolarizability to the limit,’” Opt. Lett. 32, 942–943 (2007).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

2006

B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006).
[CrossRef]

J. Zhou, M. Kuzyk, and D. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006).
[CrossRef]

2005

M. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005).
[CrossRef]

B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities,’” Phys. Rev. Lett. 95, 109401 (2005).
[CrossRef]

2004

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

2003

M. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003).
[CrossRef]

2000

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef]

1995

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Bretthorst, G. L.

G. L. Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation (Springer-Verlag, 1988).

Champagne, B.

B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006).
[CrossRef]

B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities,’” Phys. Rev. Lett. 95, 109401 (2005).
[CrossRef]

Clays, K.

J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
[CrossRef]

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

Coe, B.

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

Dalton, L.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Fetterman, H.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Ghosn, R.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Harper, A.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Jen, A.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Kelley, A.

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

Kirtman, B.

B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006).
[CrossRef]

B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities,’” Phys. Rev. Lett. 95, 109401 (2005).
[CrossRef]

Kuzyk, M.

J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
[CrossRef]

J. Zhou, M. Kuzyk, and D. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006).
[CrossRef]

M. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005).
[CrossRef]

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

M. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003).
[CrossRef]

Kuzyk, M. G.

S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system,” J. Opt. Soc. Am. B 28, 882–891 (2011).
[CrossRef]

D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef]

Moreno, J.

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

Mustacich, R.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Pérez-Moreno, J.

J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
[CrossRef]

Petschek, R.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Shafei, S.

Shea, K.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Shi, Y.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Steier, W.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Szafruga, U. B.

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

Tarantola, A.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Tripathy, K.

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

Watkins, D.

Watkins, D. S.

D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

Wiggers, G.

Zhou, J.

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

J. Zhou, M. Kuzyk, and D. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006).
[CrossRef]

Ziari, M.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Chem. Mater.

L. Dalton, A. Harper, R. Ghosn, W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. Mustacich, A. Jen, and K. Shea, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

J. Chem. Phys.

K. Tripathy, J. Moreno, M. Kuzyk, B. Coe, K. Clays, and A. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932 (2004).
[CrossRef]

D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions on the universal properties of systems with optimized off-resonant intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008).
[CrossRef]

B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

M. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007).
[CrossRef]

Phys. Rev. Lett.

B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities,’” Phys. Rev. Lett. 95, 109401 (2005).
[CrossRef]

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef]

M. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003).
[CrossRef]

Other

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge University, 2007).

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).

G. L. Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation (Springer-Verlag, 1988).

Available online from http://tatherton.phy.tufts.edu/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics