Abstract

The profile of an amplitude-phase volume holographic grating recorded in an additively colored calcium fluoride crystal is reconstructed from the spatial distribution of luminescence intensity in a thin layer of the grating with the use of a confocal scanning microscope. In agreement with the previously established mechanism of hologram recording in ionic crystals with color centers, the grating profile appears nonsinusoidal; the spatial distribution of luminescence intensity can be approximated by the sum of three spatial harmonics with the ratio of amplitudes 100:50:19. Almost the same ratio is obtained from the analysis of the angular dependencies of the diffraction at the three first harmonic components of the grating.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Su and T. K. Gaylord, “Refractive-index profile and physical process determination in thick gratings in electrooptic crystals,” Appl. Opt. 15, 1947–1952 (1976).
    [CrossRef]
  2. K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
    [CrossRef]
  3. M. B. Sponsler, “Refractive-index and orientation profiles of holographic gratings written in liquid-crystalline monomers,” J. Phys. Chem. 99, 9430–9436 (1995).
    [CrossRef]
  4. G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995).
    [CrossRef]
  5. I. Bányász, “Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy,” Appl. Phys. Lett. 83, 4282–4284 (2003).
    [CrossRef]
  6. C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
    [CrossRef]
  7. F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
    [CrossRef]
  8. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
    [CrossRef]
  9. A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
    [CrossRef]
  10. A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
    [CrossRef]
  11. V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
    [CrossRef]
  12. A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
    [CrossRef]
  13. A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
    [CrossRef]
  14. V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).
  15. A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
    [CrossRef]
  16. V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).
  17. A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
    [CrossRef]
  18. A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
    [CrossRef]
  19. R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
    [CrossRef]
  20. W. B. Fowler, ed., Physics of Colour Centers (Academic, 1968).
  21. A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
    [CrossRef]
  22. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis,” Opt. Express 16, 6528–6536 (2008).
    [CrossRef]
  23. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis: erratum,” Opt. Express 17, 23350 (2009).
    [CrossRef]
  24. L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, “Study of angular responses of mixed amplitude-phase holographic gratings: shifted Borrmann effect,” Opt. Lett. 26, 786–788 (2001).
    [CrossRef]
  25. W. Hayes, ed., Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties (Clarendon, 1974).
  26. V. A. Arkhangelskaya and A. S. Shcheulin, “Structure and spectroscopic properties of perturbed M-centers in fluorite-type crystals with alkali metals,” Opt. Spektrosk. 57, 847–852 (1984) (in Russian).

2011 (4)

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
[CrossRef]

2010 (1)

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

2009 (3)

A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis: erratum,” Opt. Express 17, 23350 (2009).
[CrossRef]

2008 (2)

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis,” Opt. Express 16, 6528–6536 (2008).
[CrossRef]

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

2007 (2)

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

2003 (1)

I. Bányász, “Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy,” Appl. Phys. Lett. 83, 4282–4284 (2003).
[CrossRef]

2001 (1)

2000 (1)

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

1999 (2)

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

1998 (1)

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

1995 (2)

M. B. Sponsler, “Refractive-index and orientation profiles of holographic gratings written in liquid-crystalline monomers,” J. Phys. Chem. 99, 9430–9436 (1995).
[CrossRef]

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995).
[CrossRef]

1994 (1)

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

1993 (1)

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

1984 (1)

V. A. Arkhangelskaya and A. S. Shcheulin, “Structure and spectroscopic properties of perturbed M-centers in fluorite-type crystals with alkali metals,” Opt. Spektrosk. 57, 847–852 (1984) (in Russian).

1976 (1)

Angervaks, A. E.

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Arkhangelskaya, V. A.

V. A. Arkhangelskaya and A. S. Shcheulin, “Structure and spectroscopic properties of perturbed M-centers in fluorite-type crystals with alkali metals,” Opt. Spektrosk. 57, 847–852 (1984) (in Russian).

Bányász, I.

I. Bányász, “Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy,” Appl. Phys. Lett. 83, 4282–4284 (2003).
[CrossRef]

Beléndez, A.

Belous, V. M.

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

Bieringer, T.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Blaya, S.

Bruneel, J.-L.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Buffeteau, T.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Carretero, L.

Chikama, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Curtis, K.

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

Drevenšek-Olenik, I.

Ellabban, M.

Fally, M.

Fedorov, P. P.

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Fimia, A.

Gainutdinov, R. V.

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Gaylord, T. K.

Granovskii, V. A.

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

Harris, A. L.

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Harris, T. D.

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Huber, M. R.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Kagan, C. R.

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Koryakina, L. F.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Korzinin, Y. L.

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Kudryavtsev, M. D.

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

Kupchikov, A. K.

A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Lagugné-Labarthet, F.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Madrigal, R. F.

Mandel, V. E.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

Mastubara, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995).
[CrossRef]

Oyama, S.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Petrova, M. A.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Popov, A. Y.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

Ryskin, A. I.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Schilling, M. L.

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Semenova, T. S.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Shcheulin, A. S.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

V. A. Arkhangelskaya and A. S. Shcheulin, “Structure and spectroscopic properties of perturbed M-centers in fluorite-type crystals with alkali metals,” Opt. Spektrosk. 57, 847–852 (1984) (in Russian).

Shugailo, Y. B.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

Sourisseau, C.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Sponsler, M. B.

M. B. Sponsler, “Refractive-index and orientation profiles of holographic gratings written in liquid-crystalline monomers,” J. Phys. Chem. 99, 9430–9436 (1995).
[CrossRef]

Su, S. F.

Tomita, Y.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Tyurin, A. V.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

Veniaminov, A. V.

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995).
[CrossRef]

Zilker, S. J.

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. Bányász, “Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy,” Appl. Phys. Lett. 83, 4282–4284 (2003).
[CrossRef]

J. Appl. Phys. (1)

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

J. Chem. Phys. (1)

C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

J. Phys. Chem. (1)

M. B. Sponsler, “Refractive-index and orientation profiles of holographic gratings written in liquid-crystalline monomers,” J. Phys. Chem. 99, 9430–9436 (1995).
[CrossRef]

Opt. Commun. (2)

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995).
[CrossRef]

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (10)

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Formation kinetics of volume holograms in reversible photochromic media,” Opt. Spectrosc. 110, 609–616 (2011).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Determination of amplitude and phase modulations during three-dimensional holographic recording,” Opt. Spectrosc. 76, 97–100 (1994).

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111, 999–1007 (2011).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, “Reflection hologram on MA+ color centers in CaF2:Na crystal as a luminescent 1D photonic crystal,” Opt. Spectrosc. 107, 164–166 (2009).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

Opt. Spektrosk. (1)

V. A. Arkhangelskaya and A. S. Shcheulin, “Structure and spectroscopic properties of perturbed M-centers in fluorite-type crystals with alkali metals,” Opt. Spektrosk. 57, 847–852 (1984) (in Russian).

Phys. Chem. Chem. Phys. (1)

F. Lagugné-Labarthet, J.-L. Bruneel, T. Buffeteau, C. Sourisseau, M. R. Huber, S. J. Zilker, and T. Bieringer, “Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry,” Phys. Chem. Chem. Phys. 2, 5154–5167 (2000).
[CrossRef]

Phys. Solid State (1)

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Proc. SPIE (1)

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
[CrossRef]

Other (2)

W. B. Fowler, ed., Physics of Colour Centers (Academic, 1968).

W. Hayes, ed., Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties (Clarendon, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorption spectra of the CaF 2 crystal with color centers before (solid curve) and after (dotted curve) hologram recording in the crystal.

Fig. 2.
Fig. 2.

Angular dependencies of the zeroth and ± 1 diffraction orders for the grating when read out at 532 nm. Circles ( η 0 ) and squares ( η ± 1 ) refer to the experimental data; dashed and solid curves correspond to the theoretical approximation using Eqs. (3) and (4).

Fig. 3.
Fig. 3.

Luminescence spectrum of the CaF 2 crystal with a holographic grating (solid curve). Dotted curve shows the long-wavelength absorption band of the M A + centers.

Fig. 4.
Fig. 4.

Images of the 15 μm × 15 μm area of the sample with a holographic grating obtained by the confocal scanning microscope: (a) in the light of the crystal luminescence excited by an argon ion laser operating at 514.5 nm and (b) in the transmitted excitation light.

Fig. 5.
Fig. 5.

Transversal profiles of the grating obtained from the images shown in Fig. 4: the transmittance profile (squares) and its approximation with a sine curve (dashed curve); the luminescence profile (circles) and its best fit with the sum of three harmonic components with the amplitudes ratio 100 50 19 (solid curve).

Tables (1)

Tables Icon

Table 1. Grating Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ n ( x ) = m ( 1 ) m + 1 δ n m cos ( 2 π m x d ) ,
δ α ( x ) = m ( 1 ) m + 1 δ α m cos ( 2 π m x d ) .
η m ( θ ) = 2 exp ( 2 α 0 t cos θ ) κ 1 2 + κ 2 2 z 0 { cosh [ z 0 t cos ( ψ 0 / 2 ) cos θ ] cos [ z 0 t sin ( ψ 0 / 2 ) cos θ ] } ,
η 0 ( θ ) = exp ( 2 α t cos θ ) z 0 { ϑ 2 + z 0 2 cosh [ z 0 t cos ( ψ 0 / 2 ) cos θ ] ϑ 2 z 0 2 cos [ z 0 t sin ( ψ 0 / 2 ) cos θ ] + ϑ z 0 sin ( ψ 0 / 2 ) sinh [ z 0 t cos ( ψ 0 / 2 ) cos θ ] ϑ z 0 cos ( ψ 0 / 2 ) sin [ z 0 t sin ( ψ 0 / 2 ) cos θ ] } ,
ϑ = 4 π n 0 sin θ m λ ( sin θ sin θ m ) ,
z 0 = [ ( ϑ 2 + 4 ( κ 1 2 κ 2 2 ) ) 2 + ( 8 κ 1 κ 2 ) 2 ] 1 / 2 ,
ψ 0 = acos { [ ϑ 2 + 4 ( κ 1 2 κ 2 2 ) ] z 0 } .

Metrics