Abstract

It is demonstrated that the presence of the metal on the walls of dielectric grating slits opens new possibilities for tailoring optical properties of metal–dielectric plasmonic gratings. In particular, a new kind of metal-thickness-sensitive resonances appear due to the excitation of the Fabry–Perot plasmonic modes in the horizontal cavity formed inside the slits by vertical metalized walls. It makes the considered plasmonic structures of great interest for applications where the concentration of the electromagnetic energy is vital. Moreover, transmission peaks related to the Fabry–Perot modes inside the slits etched in the dielectric part exhibit significant enhancement and blueshift as the thickness of the metal on the slit walls increases.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
    [CrossRef]
  3. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [CrossRef]
  4. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  5. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  6. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef]
  7. For references and a review, see, e.g., A. S. Vengurlekar, “Extraordinary optical transmission through metal films with subwavelength holes and slits,” Current Sci. 98, 1020–1032(2010).
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]
  9. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
    [CrossRef]
  10. A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
    [CrossRef]
  11. Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
    [CrossRef]
  12. A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
    [CrossRef]
  13. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006).
    [CrossRef]
  14. G. Granet, “Enhanced transmission through 1D slanted subwavelength slits arrays in metallic films,” in Progress In Electromagnetics Research Symposium Abstracts (The Electromagnetics Academy, 2009), p. 788.
  15. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
    [CrossRef]
  16. S. A. Kuznetsov, A. Vengurlekar, A. K. Zvezdin, V. I. Belotelov, and A. N. Kalish, “Optical properties of one-dimensional metal–dielectric diffraction gratings,” J. Opt. Technol. 78, 291–293 (2011).
    [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  18. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
    [CrossRef]
  19. M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
    [CrossRef]
  20. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2011

2010

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

For references and a review, see, e.g., A. S. Vengurlekar, “Extraordinary optical transmission through metal films with subwavelength holes and slits,” Current Sci. 98, 1020–1032(2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

2009

M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
[CrossRef]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

2006

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[CrossRef]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006).
[CrossRef]

2005

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

2003

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[CrossRef]

2002

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

1995

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

Bartal, G.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Belotelov, V. I.

Blachere, J.

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

Bozhevolnyi, S. I.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

Bustarret, E.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

David, C.

de Abajo, F. J. G.

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ekinci, Y.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Gopal, A. V.

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

Granet, G.

G. Granet, “Enhanced transmission through 1D slanted subwavelength slits arrays in metallic films,” in Progress In Electromagnetics Research Symposium Abstracts (The Electromagnetics Academy, 2009), p. 788.

Grann, E. B.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Ishihara, T.

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, Y. S.

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

Kalish, A. N.

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

Kim, H. K.

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
[CrossRef]

Kuznetsov, S. A.

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, L.

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[CrossRef]

Lopez-Rios, T.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Moharam, M. G.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Polman, A.

M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
[CrossRef]

Pommet, D. A.

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Sigg, H.

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

Solak, H. H.

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

Sun, Z.

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Vengurlekar, A.

Vengurlekar, A. S.

For references and a review, see, e.g., A. S. Vengurlekar, “Extraordinary optical transmission through metal films with subwavelength holes and slits,” Current Sci. 98, 1020–1032(2010).

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[CrossRef]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yao, J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

Zhang, X.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Zvezdin, A. K.

Appl. Phys. Lett.

Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005).
[CrossRef]

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, and A. Polman, “Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence,” Appl. Phys. Lett. 94, 183104 (2009).
[CrossRef]

Current Sci.

For references and a review, see, e.g., A. S. Vengurlekar, “Extraordinary optical transmission through metal films with subwavelength holes and slits,” Current Sci. 98, 1020–1032(2010).

J. Opt. A

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Technol.

Laser Photon. Rev.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4, 311–335 (2010).
[CrossRef]

Nano Lett.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489–3493(2009).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295(2010).
[CrossRef]

Nat. Mater.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express

Phys. Rev. B

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403(R) (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Phys. Rev. Lett.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rev. Mod. Phys.

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

Other

G. Granet, “Enhanced transmission through 1D slanted subwavelength slits arrays in metallic films,” in Progress In Electromagnetics Research Symposium Abstracts (The Electromagnetics Academy, 2009), p. 788.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Considered metal–dielectric structure. (b) Multilayer structure for considering Fabry–Perot modes and schematic depiction of electromagnetic field distribution for different modes (see Section 2 for details). The polarization is TM. Green [lower region in (a) and outer regions in (b)] and yellow areas correspond to silica and gold, respectively.

Fig. 2.
Fig. 2.

Resonant wavelength calculated versus thickness of metallic films for Fabry–Perot modes of orders m = 1 (thick blue curves) and m = 2 (thin red curves).

Fig. 3.
Fig. 3.

Transmission and absorption versus wavelength ( d = 700 nm , d 1 = 520 nm ) for different values of t : t = 0 (black dotted curves), t = 10 (black solid curves), t = 15 (red dashed curves), t = 20 (green short-dashed curves), and t = 40 nm (blue dashed–dotted curves). Arrows indicate the wavelengths for the FP-SPP and Fabry–Perot slit modes calculated via Eqs. (1)–(4).

Fig. 4.
Fig. 4.

Distribution of the electromagnetic field (square of the magnetic field | H | 2 ) in the structure ( d = 700 nm , d 1 = 520 nm , t = 10 nm ). (a) FP mode, λ = 1190 nm ; (b) FP-SPP, λ = 905 nm ; (c) SPP on air–Au interface, λ = 710 nm .

Fig. 5.
Fig. 5.

Transmission versus wavelength and period at constant slit size ( d 2 = 160 nm , t = 10 nm ). (b) Dispersion of transmission (versus wavelength and angle of incidence) ( d = 700 nm , d 1 = 520 nm , t = 10 nm ).

Fig. 6.
Fig. 6.

Transmission spectra for different slant angles of the metalized walls: θ = 0 ° (red dashed curve), θ = 3 ° (black solid curve), θ = 6 ° (green dashed–dotted curve), and θ = 8 ° (magenta dashed–dotted–dotted curve) ( d = 700 nm , d 1 = 520 nm , d 2 = 160 nm , t = 10 nm ).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 β L + φ 1 + φ 2 = 2 π m ,
[ γ a sinh γ a d 2 2 + γ d ε d cosh γ a d 2 2 ] γ m ε m cosh γ m t + [ γ a γ d ε d sinh γ a d 2 2 + γ m 2 ε m 2 cosh γ a d 2 2 ] sinh γ m t = 0 ,
[ γ a cosh γ a d 2 2 + γ d ε d sinh γ a d 2 2 ] γ m ε m cosh γ m t + [ γ a γ d ε d cosh γ a d 2 2 + γ m 2 ε m 2 sinh γ a d 2 2 ] sinh γ m t = 0 ,
β = k 0 [ ε m ε d / ( ε m + ε d ) ] 1 / 2 .
r = [ r d m + r m a exp ( 2 i k 0 ε m 1 / 2 t ) ] [ 1 + r d m r m a exp ( 2 i k 0 ε m 1 / 2 t ) ] 1 ,

Metrics